Nerve T2 signal increase seems to be an accurate sign to determine the presence of UNE. Nerve caliber enlargement discriminates severe from mild UNE. UNE may be diagnosed with high accuracy by means of quantitative or qualitative evaluation of these signs.
Sciatic nerve palsy related to hip replacement surgery (HRS) is among the most common causes of sciatic neuropathies. The sciatic nerve may be injured by various different periprocedural mechanisms. The precise localization and extension of the nerve lesion, the determination of nerve continuity, lesion severity, and fascicular lesion distribution are essential for assessing the potential of spontaneous recovery and thereby avoiding delayed or inappropriate therapy. Adequate therapy is in many cases limited to conservative management, but in certain cases early surgical exploration and release of the nerve is indicated. Nerve-conduction-studies and electromyography are essential in the diagnosis of nerve injuries. In postsurgical nerve injuries, additional diagnostic imaging is important as well, in particular to detect or rule out direct mechanical compromise. Especially in the presence of metallic implants, commonly applied diagnostic imaging tests generally fail to adequately visualize nervous tissue. MRI has been deemed problematic due to implant-related artifacts after HRS. In this study, we describe for the first time the spectrum of imaging findings of Magnetic Resonance neurography (MRN) employing pulse sequences relatively insensitive to susceptibility artifacts (susceptibility insensitive MRN, siMRN) in a series of 9 patients with HRS procedure related sciatic nerve palsy. We were able to determine the localization and fascicular distribution of the sciatic nerve lesion in all 9 patients, which clearly showed on imaging predominant involvement of the peroneal more than the tibial division of the sciatic nerve. In 2 patients siMRN revealed direct mechanical compromise of the nerve by surgical material, and in one of these cases indication for surgical release of the sciatic nerve was based on siMRN. Thus, in selected cases of HRS related neuropathies, especially when surgical exploration of the nerve is considered, siMRN, with its potential to largely overcome implant related artifacts, is a useful diagnostic addition to nerve-conduction-studies and electromyography.
PurposePatients with ulnar neuropathy of unclear etiology occasionally present with lesion extension from elbow to upper arm level on MRI. This study investigated whether MRI thereby distinguishes multifocal neuropathy from focal-compressive neuropathy at the elbow.MethodsThis prospective study was approved by the institutional ethics committee and written informed consent was obtained from all participants. 122 patients with ulnar mononeuropathy of undetermined localization and etiology by clinical and electrophysiological examination were assessed by MRI at upper arm and elbow level using T2-weighted fat-saturated sequences at 3T. Twenty-one patients were identified with proximal ulnar nerve lesions and evaluated for findings suggestive of disseminated neuropathy (i) subclinical lesions in other nerves, (ii) unfavorable outcome after previous decompressive elbow surgery, and (iii) subsequent diagnosis of inflammatory or other disseminated neuropathy. Two groups served as controls for quantitative analysis of nerve-to-muscle signal intensity ratios: 20 subjects with typical focal ulnar neuropathy at the elbow and 20 healthy subjects.ResultsIn the group of 21 patients with proximal ulnar nerve lesion extension, T2-w ulnar nerve signal was significantly (p<0.001) higher at upper arm level than in both control groups. A cut-off value of 1.92 for maximum nerve-to-muscle signal intensity ratio was found to be sensitive (86%) and specific (100%) to discriminate this group. Ten patients (48%) exhibited additional T2-w lesions in the median and/or radial nerve. Another ten (48%) had previously undergone elbow surgery without satisfying outcome. Clinical follow-up was available in 15 (71%) and revealed definitive diagnoses of multifocal neuropathy of various etiologies in four patients. In another eight, diagnoses could not yet be considered definitive but were consistent with multifocal neuropathy.ConclusionProximal ulnar nerve T2 lesions at upper arm level are detected by MRI and indicate the presence of a non-focal disseminated neuropathy instead of a focal compressive neuropathy.
ObjectiveTo evaluate T2-signal of high-resolution MRI in distal ulnar nerve branches at the wrist as diagnostic sign of guyon’s-canal-syndrome (GCS).Materials and Methods11 GCS patients confirmed by clinical/electrophysiological findings, and 20 wrists from 11 asymptomatic volunteers were prospectively included to undergo the following protocol: axial T2-weighted-fat-suppressed and T1-weighted-turbo-spin-echo-sequences (3T-MR-scanner, Magnetom/Verio/Siemens). Patients were examined in prone position with the arm extended and wrist placed in an 8-channel surface-array-coil. Nerve T2-signal was evaluated as contrast-to-noise-ratios (CNR) from proximal-to-distal in ulnar nerve trunk, its superficial/sensory and deep/motor branch. Distal motor-nerve-conduction (distal-motor-latency (dml)) to first dorsal-interosseus (IOD I) and abductor digiti minimi muscles was correlated with T2-signal. Approval by the institutional review-board and written informed consent was given by all participants.ResultsIn GCS, mean nerve T2-signal was strongly increased within the deep/motor branch (11.7±4.8 vs.controls:−5.3±2.4;p = 0.001) but clearly less and not significantly increased in ulnar nerve trunk (6.8±6.4vs.−7.4±2.5;p = 0.07) and superficial/sensory branch (−2.1±4.9vs.−9.7±2.9;p = 0.08). Median nerve T2-signal did not differ between patients and controls (−9.8±2.5vs.−6.7±4.2;p = 0.45). T2-signal of deep/motor branch correlated strongly with motor-conduction-velocity to IOD I in non-linear fashion (R2 = −0.8;p<0.001). ROC-analysis revealed increased nerve T2-signal of the deep/motor branch to be a sign of excellent diagnostic performance (area-under-the-curve 0.94, 95% CI: 0.85–1.00; specificity 90%, sensitivity 89.5%).ConclusionsNerve T2-signal increase of distal ulnar nerve branches and in particular of the deep/motor branch is highly accurate for the diagnostic determination of GCS. Furthermore, for the first time it was found in nerve entrapment injury that T2-signal strongly correlates with electrical-conduction-velocity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.