We present a new measurement of the Hubble Constant H 0 and other cosmological parameters based on the joint analysis of three multiply-imaged quasar systems with measured gravitational time delays. First, we measure the time delay of HE 0435−1223 from 13-year light curves obtained as part of the COSMOGRAIL project. Companion papers detail the modeling of the main deflectors and line of sight effects, and how these data are combined to determine the time-delay distance of HE 0435−1223. Crucially, the measurements are carried out blindly with respect to cosmological parameters in order to avoid confirmation bias. We then combine the timedelay distance of HE 0435−1223 with previous measurements from systems B1608+656 and RXJ1131−1231 to create a Time Delay Strong Lensing probe (TDSL). In flat ΛCDM with free matter and energy density, we find H 0 = 71.9 +2.4 −3.0 km s −1 Mpc −1 and Ω Λ = 0.62 +0.24 −0.35 . This measurement is completely independent of, and in agreement with, the local distance ladder measurements of H 0 . We explore more general cosmological models combining TDSL with other probes, illustrating its power to break degeneracies inherent to other methods. The joint constraints from TDSL and Planck are H 0 = 69.2 +1.4 −2.2 km s −1 Mpc −1 , Ω Λ = 0.70 +0.01 −0.01 and Ω k = 0.003 +0.004 −0.006 in open ΛCDM and H 0 = 79.0 +4.4 −4.2 km s −1 Mpc −1 , Ω de = 0.77 +0.02 −0.03 and w = −1.38 +0.14 −0.16 in flat w CDM. In combination with Planck and Baryon Acoustic Oscillation data, when relaxing the constraints on the numbers of relativistic species we find N eff = 3.34 +0.21 −0.21 in N eff ΛCDM and when relaxing the total mass of neutrinos we find Σm ν ≤ 0.182 eV in m ν ΛCDM. Finally, in an open w CDM in combination with Planck and CMB lensing we find H 0 = 77.9 +5.0 −4.2 km s −1 Mpc −1 , Ω de = 0.77 +0.03 −0.03 , Ω k = −0.003 +0.004 −0.004 and w = −1.37 +0.18 −0.23 .
Ongoing and future imaging surveys represent significant improvements in depth, area and seeing compared to current data-sets. These improvements offer the opportunity to discover up to three orders of magnitude more galaxy-galaxy strong lenses than are currently known. In this work we forecast the number of lenses discoverable in forthcoming surveys and simulate their properties. We generate a population of statistically realistic strong lenses and simulate observations of this population for the Dark Energy Survey (DES), Large Synoptic Survey Telescope (LSST) and Euclid surveys. We verify our model against the galaxy-scale lens search of the Canada-France-Hawaii Telescope Legacy Survey (CFHTLS), predicting 250 discoverable lenses compared to 220 found by Gavazzi et al. (2014). The predicted Einstein radius distribution is also remarkably similar to that found by . For future surveys we find that, assuming Poisson limited lens galaxy subtraction, searches in DES, LSST and Euclid datasets should discover 2400, 120000, and 170000 galaxy-galaxy strong lenses respectively. Finders using blue minus red (g − i) difference imaging for lens subtraction can discover 1300 and 62000 lenses in DES and LSST. The uncertainties on the model are dominated by the high redshift source population which typically gives fractional errors on the discoverable lens number at the tens of percent level. We find that doubling the signal-to-noise ratio required for a lens to be detectable, approximately halves the number of detectable lenses in each survey, indicating the importance of understanding the selection function and sensitivity of future lens finders in interpreting strong lens statistics. We make our population forecasting and simulated observation codes publicly available so that the selection function of strong lens finders can easily be calibrated.
Under the assumption of a flat ΛCDM cosmology, recent data from the Planck satellite point toward a Hubble constant that is in tension with that measured by gravitational lens time delays and by the local distance ladder. Prosaically, this difference could arise from unknown systematic uncertainties in some of the measurements. More interestingly -if systematics were ruled out -resolving the tension would require a departure from the flat ΛCDM cosmology, introducing for example a modest amount of spatial curvature, or a non-trivial dark energy equation of state. To begin to address these issues, we present here an analysis of the gravitational lens RXJ1131−1231 that is improved in one particular regard: we examine the issue of systematic error introduced by an assumed lens model density profile. We use more flexible gravitational lens models with baryonic and dark matter components, and find that the exquisite Hubble Space Telescope image with thousands of intensity pixels in the Einstein ring and the stellar velocity dispersion of the lens contain sufficient information to constrain these more flexible models. The total uncertainty on the time-delay distance is 6.6% for a single system. We proceed to combine our improved time-delay distance measurements with the WMAP9 and Planck posteriors. In an open ΛCDM model, the data for RXJ1131−1231 in combination with Planck favor a flat universe with Ω k = 0.00 +0.01 −0.02 (68% CI). In a flat wCDM model, the combination of RXJ1131−1231 and Planck yields w = −1.52 +0.19 −0.20 (68% CI).
Strong gravitational lens systems with time delays between the multiple images allow measurements of time-delay distances, which are primarily sensitive to the Hubble constant that is key to probing dark energy, neutrino physics, and the spatial curvature of the Universe, as well as discovering new physics. We present H0LiCOW (H 0 Lenses in COSMOGRAIL's Wellspring), a program that aims to measure H 0 with < 3.5% uncertainty from five lens systems (B1608+656, RXJ1131−1231, HE 0435−1223, WFI2033−4723 and HE 1104−1805). We have been acquiring (1) time delays through COSMOGRAIL and Very Large Array monitoring, (2) high-resolution Hubble Space Telescope imaging for the lens mass modeling, (3) wide-field imaging and spectroscopy to characterize the lens environment, and (4) moderate-resolution spectroscopy to obtain the stellar velocity dispersion of the lenses for mass modeling. In cosmological models with one-parameter extension to flat ΛCDM, we expect to measure H 0 to < 3.5% in most models, spatial curvature Ω k to 0.004, w to 0.14, and the effective number of neutrino species to 0.2 (1σ uncertainties) when combined with current CMB experiments. These are, respectively, a factor of ∼ 15, ∼ 2, and ∼ 1.5 tighter than CMB alone. Our data set will further enable us to study the stellar initial mass function of the lens galaxies, and the co-evolution of supermassive black holes and their host galaxies. This program will provide a foundation for extracting cosmological distances from the hundreds of time-delay lenses that are expected to be discovered in current and future surveys.
The H0LiCOW collaboration inferred via strong gravitational lensing time delays a Hubble constant value of H0 = 73.3−1.8+1.7 km s−1 Mpc−1, describing deflector mass density profiles by either a power-law or stars (constant mass-to-light ratio) plus standard dark matter halos. The mass-sheet transform (MST) that leaves the lensing observables unchanged is considered the dominant source of residual uncertainty in H0. We quantify any potential effect of the MST with a flexible family of mass models, which directly encodes it, and they are hence maximally degenerate with H0. Our calculation is based on a new hierarchical Bayesian approach in which the MST is only constrained by stellar kinematics. The approach is validated on mock lenses, which are generated from hydrodynamic simulations. We first applied the inference to the TDCOSMO sample of seven lenses, six of which are from H0LiCOW, and measured H0 = 74.5−6.1+5.6 km s−1 Mpc−1. Secondly, in order to further constrain the deflector mass density profiles, we added imaging and spectroscopy for a set of 33 strong gravitational lenses from the Sloan Lens ACS (SLACS) sample. For nine of the 33 SLAC lenses, we used resolved kinematics to constrain the stellar anisotropy. From the joint hierarchical analysis of the TDCOSMO+SLACS sample, we measured H0 = 67.4−3.2+4.1 km s−1 Mpc−1. This measurement assumes that the TDCOSMO and SLACS galaxies are drawn from the same parent population. The blind H0LiCOW, TDCOSMO-only and TDCOSMO+SLACS analyses are in mutual statistical agreement. The TDCOSMO+SLACS analysis prefers marginally shallower mass profiles than H0LiCOW or TDCOSMO-only. Without relying on the form of the mass density profile used by H0LiCOW, we achieve a ∼5% measurement of H0. While our new hierarchical analysis does not statistically invalidate the mass profile assumptions by H0LiCOW – and thus the H0 measurement relying on them – it demonstrates the importance of understanding the mass density profile of elliptical galaxies. The uncertainties on H0 derived in this paper can be reduced by physical or observational priors on the form of the mass profile, or by additional data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.