Among the greatest uncertainties in future energy supply and a subject of considerable environmental concern is the amount of oil and gas yet to be found in the Arctic. By using a probabilistic geology-based methodology, the United States Geological Survey has assessed the area north of the Arctic Circle and concluded that about 30% of the world's undiscovered gas and 13% of the world's undiscovered oil may be found there, mostly offshore under less than 500 meters of water. Undiscovered natural gas is three times more abundant than oil in the Arctic and is largely concentrated in Russia. Oil resources, although important to the interests of Arctic countries, are probably not sufficient to substantially shift the current geographic pattern of world oil production.
To test existing models for the formation of the Amerasian Basin, detrital zircon suites from 12 samples of Triassic sandstone from the circum‐Arctic region were dated by laser ablation‐inductively coupled plasma‐mass spectrometry (ICP‐MS). The northern Verkhoyansk (NE Russia) has Permo‐Carboniferous (265–320 Ma) and Cambro‐Silurian (410–505 Ma) zircon populations derived via river systems from the active Baikal Mountain region along the southern Siberian craton. Chukotka, Wrangel Island (Russia), and the Lisburne Hills (western Alaska) also have Permo‐Carboniferous (280–330 Ma) and late Precambrian‐Silurian (420–580 Ma) zircons in addition to Permo‐Triassic (235–265 Ma), Devonian (340–390 Ma), and late Precambrian (1000–1300 Ma) zircons. These ages suggest at least partial derivation from the Taimyr, Siberian Trap, and/or east Urals regions of Arctic Russia. The northerly derived Ivishak Formation (Sadlerochit Mountains, Alaska) and Pat Bay Formation (Sverdrup Basin, Canada) are dominated by Cambrian–latest Precambrian (500–600 Ma) and 445–490 Ma zircons. Permo‐Carboniferous and Permo‐Triassic zircons are absent. The Bjorne Formation (Sverdrup Basin), derived from the south, differs from other samples studied with mostly 1130–1240 Ma and older Precambrian zircons in addition to 430–470 Ma zircons. The most popular plate tectonic model for the origin of the Amerasian Basin involves counterclockwise rotation of the Arctic Alaska–Chukotka microplate away from the Canadian Arctic margin. The detrital zircon data suggest that the Chukotka part of the microplate originated closer to the Taimyr and Verkhoyansk, east of the Polar Urals of Russia, and not from the Canadian Arctic.
The eastern Peninsular Ranges batholith is dominated by voluminous La Posta-type tonalite-granodiorite intrusions that compose half of the magmatic arc at present erosion level. Zircon U-Pb and hornblende 40 Ar/ 39 Ar results from these intrusions indicate that they were emplaced in a remarkably narrow interval (99-92 Ma) that closely followed cessation of west-directed compression of the arc system. Emplacement of the La Posta suite coincided with a major pulse of coarse-grained sediment into the adjacent forearc basin in early Cenomanian to middle Turonian time. Paleontologic control, and plutonic age and detrital zircon U-Pb data demonstrate the virtual absence of a time lag between magma emplacement and sedimentary response. The tight linkage between magmatism, arc exhumation, and sediment delivery to the forearc indicates that development of major erosional topography in the arc was driven by thermal and mechanical effects associated with large-volume batholith emplacement.
Circum-Arctic Resource Appraisal: Estimates of Undiscovered Oil and Gas North of the Arctic Circle T he U.S. Geological Survey (USGS) has completed an assessment of undiscovered conventional oil and gas resources in all areas north of the Arctic Circle. Using a geologybased probabilistic methodology, the USGS estimated the occurrence of undiscovered oil and gas in 33 geologic provinces thought to be prospective for petroleum. The sum of the mean estimates for each province indicates that 90 billion barrels of oil, 1,669 trillion cubic feet of natural gas, and 44 billion barrels of natural gas liquids may remain to be found in the Arctic, of which approximately 84 percent is expected to occur in offshore areas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.