This review provides an overview of animal models for the evaluation, comparison, and systematic optimization of tissue engineering and regenerative medicine strategies related to bone tissue. This review includes an overview of major factors that influence the rational design and selection of an animal model. A comparison is provided of the 10 mammalian species that are most commonly used in bone research, and existing guidelines and standards are discussed. This review also identifies gaps in the availability of animal models: (1) the need for assessment of the predictive value of preclinical models for relative clinical efficacy, (2) the need for models that more effectively mimic the wound healing environment and mass transport conditions in the most challenging clinical settings (e.g., bone repair involving large bone and soft tissue defects and sites of prior surgery), and (3) the need for models that allow more effective measurement and detection of cell trafficking events and ultimate cell fate during the processes of bone modeling, remodeling, and regeneration. The ongoing need for both continued innovation and refinement in animal model systems, and the need and value of more effective standardization are reinforced.
The spindle checkpoint monitors mitotic spindle integrity and the attachment of kinetochores to the spindle. Upon sensing a defect the checkpoint blocks cell cycle progression and thereby prevents chromosome missegregation. Previous studies in budding yeast show that the activated spindle checkpoint inhibits the onset of anaphase by an unknown mechanism. One possible target of the spindle checkpoint is anaphase promoting complex (APC), which controls all postmetaphase events that are blocked by spindle checkpoint activation. We have isolated mad2, a spindle checkpoint component in fission yeast, and shown that mad2 overexpression activates the checkpoint and causes a cell cycle arrest at the metaphase-to-anaphase transition. In addition to the observation that mad2-induced arrest can be partially relieved by mitosis-promoting factor inactivation, we present genetic evidence consistent with the hypothesis that the spindle checkpoint imposes a cell cycle arrest by inhibiting APCdependent proteolysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.