The study of animal diets has benefited from the rise of high-throughput DNA sequencing applied to stomach content or faecal samples. The latter can be fresh samples used to describe recent meals or older samples, which can provide information about past feeding activities. For most invertebrates, however, it is difficult to access ‘historical’ samples, due to the small size of the animals and the absence of permanent defecation sites. Therefore, sampling must be repeated to account for seasonal variation and to capture the overall diet of a species. This study develops a method to describe the overall diet of nest-building Hymenoptera, based on a single sampling event, by analysing prey DNA from faeces accumulated in brood cells. We collected 48 nests from two species of introduced paper wasps (Polistes chinensis Fabricius and P. humilis Fabricius) in the urban and peri-urban areas of Auckland, New Zealand and selected two samples per nest. One from brood cells in the outer layer of the nest to represent the most recent diet and one from brood cells in an inner layer to represent older diet. Diet differed between species, although both fed mainly on Thysanoptera, Lepidoptera and Acariformes. Prey taxa identified to species level included both agricultural pests and native species. Prey communities consumed were significantly different between inner and outer nest samples, suggesting seasonal variation in prey availability and/or a diversification of the wasps’ diet as the colony grows. We also show for the first time potential predation of marine organisms by Polistes wasps. Our study provides field evidence that Polistes wasps feed on agricultural pests, supporting the hypothesis that some social wasp species could have a suppressing effect on agricultural pests. The proposed methodology is readily applicable to other nest-building Hymenoptera and has the potential to provide comprehensive knowledge about their diet with minimum sampling effort. Such knowledge is essential to measure the ecological impact of invasive Vespidae and support the conservation of native invertebrate biodiversity.
Parasitoid wasps are a mega-diverse, ecologically dominant, but poorly studied component of global biodiversity. In order to maximise the efficiency and reduce the cost of their collection, the application of optimal sampling techniques is necessary. Two sites in Auckland, New Zealand were sampled intensively to determine the relationship between sampling effort and observed species richness of parasitoid wasps from the family Ichneumonidae. Twenty traps were deployed at each site at three different times over the austral summer period, resulting in a total sampling effort of 840 Malaise-trap-days. Rarefaction techniques and non-parametric estimators were used to predict species richness and to evaluate the variation and completeness of sampling. Despite an intensive Malaise-trapping regime over the summer period, no asymptote of species richness was reached. At best, sampling captured two-thirds of parasitoid wasp species present. The estimated total number of species present depended on the month of sampling and the statistical estimator used. Consequently, the use of fewer traps would have caught only a small proportion of all species (one trap 7–21%; two traps 13–32%), and many traps contributed little to the overall number of individuals caught. However, variation in the catch of individual Malaise traps was not explained by seasonal turnover of species, vegetation or environmental conditions surrounding the trap, or distance of traps to one another. Overall the results demonstrate that even with an intense sampling effort the community is incompletely sampled. The use of only a few traps and/or for very short periods severely limits the estimates of richness because (i) fewer individuals are caught leading to a greater number of singletons; and (ii) the considerable variation of individual traps means some traps will contribute few or no individuals. Understanding how sampling effort affects the richness and diversity of parasitoid wasps is a useful foundation for future studies.
I believe the top three questions facing taxonomy today all relate to the health and future of the discipline itself. 1. How do we ensure taxonomy is valued? 2. How do we build and maintain taxonomic capability? 3. How do we ensure taxonomy benefits from emerging opportunities?
Many animals lay their eggs in clusters. Eggs on the periphery of clusters can be at higher risk of mortality. We asked whether the most commonly occurring clutch sizes in pentatomid bugs could result from geometrical arrangements that maximize the proportion of eggs in the cluster's interior. Although the most common clutch sizes do not correspond with geometric optimality, stink bugs do tend to lay clusters of eggs in shapes that protect increasing proportions of their offspring as clutch sizes increase. We also considered whether ovariole number, an aspect of reproductive anatomy that may be a fixed trait across many pentatomids, could explain observed distributions of clutch sizes. The most common clutch sizes across many species correspond with multiples of ovariole number. However, there are species with the same number of ovarioles that lay clutches of widely varying size, among which multiples of ovariole number are not over-represented. In pentatomid bugs, reproductive anatomy appears to be more important than egg mass geometry in determining clutch size uniformity. In addition, within this group of animals that has lost most of its variation in ovariole number, clutches with a broad range of shapes and sizes may still be laid.
Brown marmorated stink bug (BMSB), Halyomorpha halys (Hemiptera: Pentatomidae), is a serious horticultural pest causing considerable damage to local production and international supply chains as it spreads around the world. The samurai wasp, Trissolcus japonicus (Hymenoptera: Scelionidae), is well recognised as the most promising classical biological control against BMSB. The wasp has been conditionally approved for release in New Zealand in the event the stink bug establishes here. Previous host range testing showed that all available non-target New Zealand pentatomids except a single exotic species were accepted for oviposition and that the parasitoid was capable of parasitising the eggs of two native pentatomids at proportions similar to BMSB. Only one New Zealand species of pentatomid, the endemic alpine shield bug Hypsithocus hudsonae, was not previously tested owing to the difficulty of collecting it from the field. Here we report the results of no-choice oviposition tests between H. hudsonae and T. japonicus, conducted in containment, to complement previous physiological host range testing of this parasitoid in New Zealand. Parasitoids emerged from 14 out of 15 egg masses, and in total, from 78 out of 83 eggs (94%). The mean sex ratio was 89% female, and no males emerged from six egg masses. H. hudsonae is confirmed as a physiological host for T. japonicus, and this finding is discussed in relation to the strengths and limitations of physiological host range studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.