Topramezone is a new, highly selective herbicide of pyrazole structure for the post-emergence control of broadleaf and grass weeds in corn. The biokinetic properties and mode of action of topramezone were investigated in plants of Setaria faberi Herrm, Sorghum bicolor (L.) Moench, Solanum nigrum L. and the crop species corn (Zea mays L.). Within 2-5 days after treatment, topramezone caused strong photobleaching effects on the shoot, followed by plant death of sensitive weeds. The selectivity of topramezone between corn and the weed species has been quantified as above 1000-fold. By virtue of the plant symptoms and the reversal of the effects in Lemna paucicostata L. by adding homogentisate, it was hypothesized that topramezone blocks the formation of homogentisate, possibly through inhibition of 4-hydroxyphenylpyruvate dioxygenase (4-HPPD). Indeed, topramezone strongly inhibited 4-HPPD activity in vitro, with I(50) values of 15 and 23 nM for the enzyme isolated from S. faberi and recombinant enzyme of Arabidopsis thaliana L. respectively. The enzyme activity from corn was approximately 10 times less sensitive. After root and foliar application of [(14)C]topramezone, equivalent to field rates of 75 g ha(-1), the herbicide was rapidly absorbed and systemically translocated in the plant. Only marginal differences between leaf uptake and translocation of topramezone by the weeds and corn were found. Metabolism of foliar-applied [(14)C]topramezone was far more rapid in corn than in the weeds. A more rapid metabolism combined with a lower sensitivity of the 4-HPPD target enzyme contributes to the tolerance of corn to topramezone.
SummaryDue to their unique structure and function, guard cells have attracted much attention at the physiological level. Very little, however, is known about the molecular events involved in the determination and maintenance of guard cell speci®city. The KST1 gene encodes a K + in¯ux channel of guard cells in potato, and was therefore chosen as a model to study regulation of guard cell-speci®c gene expression. Transgenic potato plants carrying a fusion between the KST1 promoter and the E. coli uidA (b-glucuronidase) reporter gene revealed promoter activity in guard cells and in¯owers. A detailed dissection of the KST1 promoter led to the discovery of two independent small TATA box-proximal regulatory units, each of which was suf®cient to direct guard cell-speci®c gene transcription. Both fragments contain the sequence motif, 5¢-TAAAG-3¢, which is related to known target sites for a novel class of zinc ®nger transcription factors, called Dof proteins. Block mutagenesis of these Dof target sites in the context of different promoter constructs dramatically reduced guard cell promoter activity. A Dof gene, StDof1, was cloned and shown to be expressed in epidermal fragments highly enriched for guard cells. In gel retardation experiments, the StDof1 protein interacted in a sequence-speci®c manner with a KST1 promoter fragment containing the TAAAG motif. These results provide evidence that TAAAG elements are target sites for trans-acting Dof proteins controlling guard cell-speci®c gene expression. Our data will add to the design of tailor-made guard cell promoters as a further tool in molecular engineering of guard cell function and, hence, control of stomatal carbon dioxide (CO 2 ) uptake and water loss in crop plants.
Saflufenacil (Kixor™) is a new herbicide of the pyrimidinedione chemical class for preplant burndown and selective preemergence dicot weed control in multiple crops, including corn. In this study, the mode of action of saflufenacil was investigated. For initial characterization, a series of biotests was used in a physionomics approach for comprehensive physiological profiling of saflufenacil effects. With the use of treated duckweed plants, metabolite profiling was performed based on quantification of metabolite changes, relative to untreated controls. Physiological and metabolite profiling suggested a mode of action similar to inhibitors of protoporphyrinogen IX oxidase (PPO) in tetrapyrrole biosynthetic pathway. Saflufenacil inhibited PPO enzyme activity in vitro with 50% inhibition of 0.4 nM for the enzymes isolated from black nightshade, velvetleaf, and corn. PPO inhibition by saflufenacil caused accumulations of protoporphyrin IX (Proto) and hydrogen peroxide (H2O2) in leaf tissue of black nightshade and velvetleaf. In corn, only slight increases in Proto and H2O2 were found, which reflects in planta tolerance of this crop. The results show that saflufenacil is a new PPO-inhibiting, peroxidizing herbicide.
Potassium (K+) channels mediating important physiological functions are characterized by a common pore–forming (P) domain. We report the cloning and functional analysis of the first higher plant outward rectifying K+ channel (KCO1) from Arabidopsis thaliana. KCO1 belongs to a new class of ‘two‐pore’ K+ channels recently described in human and yeast. KCO1 has four putative transmembrane segments and tandem calcium‐binding EF‐hand motifs. Heterologous expression of KCO1 in baculovirus‐infected insect (Spodoptera frugiperda) cells resulted in outwardly rectifying, K+‐selective currents elicited by depolarizing voltage pulses in whole‐cell measurements. Activation of KCO1 was strongly dependent on the presence of nanomolar concentrations of cytosolic free Ca2+ [Ca2+]cyt. No K+ currents were detected when [Ca2+]cyt was adjusted to <150 nM. However, KCO1 strongly activated at increasing [Ca2+]cyt, with a saturating activity observed at ∼300 nM [Ca2+]cyt. KCO1 single channel analysis on excised membrane patches, resulting in a single channel conductance of 64 pS, confirmed outward rectification as well as Ca2+‐dependent activation. These data suggest a direct link between calcium‐mediated signaling processes and K+ ion transport in higher plants. The identification of KCO1 as the first plant K+ outward channel opens a new field of structure–function studies in plant ion channels.
The results suggest that TAT7 or another TAT isoenzyme is the putative target of the herbicides.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.