Our objective is to provide an optimistic strategy for reversing soil degradation by increasing public and private research efforts to understand the role of soil biology, particularly microbiology, on the health of our world's soils. We begin by defining soil quality/soil health (which we consider to be interchangeable terms), characterizing healthy soil resources, and relating the significance of soil health to agroecosystems and their functions. We examine how soil biology influences soil health and how biological properties and processes contribute to sustainability of agriculture and ecosystem services. We continue by examining what can be done to manipulate soil biology to: (i) increase nutrient availability for production of high yielding, high quality crops; (ii) protect crops from pests, pathogens, weeds; and (iii) manage other factors limiting production, provision of ecosystem services, and resilience to stresses like droughts. Next we look to the future by asking what needs to be known about soil biology that is not currently recognized or fully understood and how these needs could be addressed using emerging research tools. We conclude, based on our perceptions of how new knowledge regarding soil biology will help make agriculture more sustainable and productive, by recommending research emphases that should receive first priority through enhanced public and private research in order to reverse the trajectory toward global soil degradation.
To ensure survival, most bacteria must acquire iron, a resource that is sequestered by mammalian hosts. Pathogenic bacteria have therefore evolved intricate systems to sense iron limitation and regulate gene expression appropriately. We used a pan-Neisseria microarray to examine genes regulated in Neisseria gonorrhoeae in response to iron availability in defined medium. Overall, 203 genes varied in expression, 109 up-regulated and 94 down-regulated by iron deprivation. In iron-replete medium, genes essential to rapid bacterial growth were preferentially expressed, while iron transport functions, and predominantly genes of unknown function, were expressed in low-iron medium. Of those TonB-dependent proteins encoded in the FA1090 genome with unknown ligand specificity, expression of three was not controlled by iron availability, suggesting that these receptors may not be high-affinity transporters for iron-containing ligands. Approximately 30% of the operons regulated by iron appeared to be directly under control of Fur. Our data suggest a regulatory cascade where Fur indirectly controls gene expression by affecting the transcription of three secondary regulators. Our data also suggest that a second MerR-like regulator may be directly responding to iron availability and controlling transcription independent of the Fur protein. Comparison of our data with those recently published for Neisseria meningitidis revealed that only a small portion of genes were found to be similarly regulated in these closely related pathogens, while a large number of genes derepressed during iron starvation were unique to each organism.
Listeria monocytogenes is responsible for serious invasive illness associated with consumption of contaminated food and places a significant burden on public health and the agricultural economy. We recently developed a multilocus genotyping (MLGT) assay for high-throughput subtype determination of L. monocytogenes lineage I isolates based on interrogation of single nucleotide polymorphisms (SNPs) via multiplexed primer extension reactions. Here we report the development and validation of two additional MLGT assays that address the need for comprehensive DNA sequence-based subtyping of L. monocytogenes. The first of these novel MLGT assays targeted variation segregating within lineage II, while the second assay combined probes for lineage III strains with probes for strains representing a recently characterized fourth evolutionary lineage (IV) of L. monocytogenes. These assays were based on nucleotide variation identified in >3.8 Mb of comparative DNA sequence and consisted of 115 total probes that differentiated 93% of the 100 haplotypes defined by the multilocus sequence data. MLGT reproducibly typed the 173 isolates used in SNP discovery, and the 10,448 genotypes derived from MLGT analysis of these isolates were consistent with DNA sequence data. Application of the MLGT assays to assess subtype prevalence among isolates from ready-to-eat foods and food-processing facilities indicated a low frequency (6.3%) of epidemic clone subtypes and a substantial population of isolates (>30%) harboring mutations in inlA associated with attenuated virulence in cell culture and animal models. These mutations were restricted to serogroup 1/2 isolates, which may explain the overrepresentation of serotype 4b isolates in human listeriosis cases.Listeria monocytogenes is the causative agent of listeriosis, a food-borne disease with clinical presentations that include febrile gastroenteritis, encephalitis, meningitis, septicemia, and spontaneous abortion (7). Listeriosis infections are associated with high hospitalization (92%) and mortality (20 to 30%) rates and account for over one-quarter of all deaths attributable to known food-borne pathogens (12, 24). L. monocytogenes is widely distributed in the environment, forms biofilms, grows at refrigeration temperatures, and is relatively resistant to acid and high salt concentrations (23, 48). These characteristics enable L. monocytogenes to persist for extended periods in food-processing environments and make L. monocytogenes contamination of ready-to-eat (RTE) foods a significant concern. Accordingly, regulatory agencies have applied a zero tolerance policy for L. monocytogenes contamination in RTE foods, and L. monocytogenes has been a leading cause of food recalls due to microbial adulteration.Molecular subtyping is a critical component of L. monocytogenes outbreak detection and epidemiological investigations, which are complicated by the long incubation time for invasive listeriosis and the difficulty in identifying appropriate controls for case-control studies (44). Pulsed-fiel...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.