The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has resulted in an unprecedented shutdown in social and economic activity, with the cultural sector particularly severely affected. Restrictions on musical performances have arisen from a perception that there is a significantly higher risk of aerosol production from singing than speaking, based upon high-profile A c c e p t e d M a n u s c r i p texamples of clusters of COVID-19 following choral rehearsals. However, comparing aerosol generation from different types of vocalization, including singing, across a range of volumes is a rapidly evolving area of research. Here, we measured aerosols from singing, speaking and breathing from a large cohort of 25 professional singers in a range of musical genres in a zero-background environment, allowing unequivocal attribution of aerosol production to specific vocalizations. We do not assess the relative volumes at which people speak and sing. However, both showed steep increases in mass concentration with increase in loudness (spanning a factor of 20-30 across the dynamic range measured, p<0.001). At the quietest volume (50 to 60 dBA), neither singing (p=0.19) nor speaking (p=0.20) were significantly different to breathing. At the loudest volume (90 to 100 dBA), a statistically significant difference (p<0.001) was observed between singing and speaking, but with singing only generating a factor of between 1.5 and 3.4 more aerosol mass. Guidelines for musical performances should be based on the loudness and duration of the vocalization, the number of participants and the environment in which the activity occurs, rather than the type of vocalization.Mitigations such as the use of amplification and increased attention to ventilation should be employed where practicable.
Summary1. The sheep tick Ixodes ricinus is the most multicompetent vector in Europe, which is responsible for significant diseases of humans and livestock throughout the northern hemisphere. Modelling the tick's complex seasonal dynamics, upon which pathogen transmission potential depends, underpins the analysis of tick-borne disease risk and potential tick control. 2. We use laboratory-and field-derived empirical data to construct a population model for I. ricinus. The model is a substantially modified stage-classified Leslie matrix and includes functions for temperature-dependent development, density-dependent mortality and saturation deficit-meditated probability of questing. 3. The model was fitted to field data from three UK sites and successfully simulated seasonal patterns at a fourth site. After modification of a single parameter, the model also replicated divergent seasonal patterns in central Spain, but any biological factors underlying this geographical heterogeneity have not yet been identified. The model's applicability to wide geographical areas is thus constrained, but in ways that highlight gaps in our knowledge of tick biology. 4. Sensitivity analysis indicated that the model was generally robust, particularly to changes in density-independent mortality values, but was most sensitive to changes in parameters related to density-dependent mortality. 5. Synthesis and applications. Vector population models allow investigation into the effects of individual environmental factors on population dynamics in ways not easily possible by experimental manipulation of in situ populations. Our model can be used to evaluate public health risk, tick management strategies and potential effects of future environmental change.
We investigate the effect of school closure and subsequent reopening on the transmission of COVID-19, by considering Denmark, Norway, Sweden, and German states as case studies. By comparing the growth rates in daily hospitalisations or confirmed cases under different interventions, we provide evidence that the effect of school closure is visible as a reduction in the growth rate approximately 9 days after implementation. Limited school attendance, such as older students sitting exams or the partial return of younger year groups, does not appear to significantly affect community transmission. A large-scale reopening of schools while controlling or suppressing the epidemic appears feasible in countries such as Denmark or Norway, where community transmission is generally low. However, school reopening can contribute to significant increases in the growth rate in countries like Germany, where community transmission is relatively high. Our findings underscore the need for a cautious evaluation of reopening strategies that ensure low classroom occupancy and a solid infrastructure to quickly identify and isolate new infections.
Aim To identify floristic elements in the European flora by an analysis of the distributions of species and species groups mapped in Atlas Florae Europaeae. Location Europe, as defined by Flora Europaea. Methods We analysed the native distributions of 2762 species and 33 species’ aggregates from 79 families, which represent c. 20% of the European flora. The distributional data base, derived from Atlas Florae Europaeae, includes records from 4420 50 × 50‐km UTM grid squares. We classified species into floristic elements by a three‐stage clustering procedure, which consisted of: (1) constructing a dissimilarity hierarchy by complete linkage clustering, using a distance measure based on Jaccard’s coefficient; (2) cutting the hierarchical tree at the 0.95 level to create initial clusters, and forcing small clusters to link with larger ones until the sum of within‐group pairwise distances exceeded a threshold value; and (3) checking the allocation of all species to the redefined clusters and reassigning species if appropriate, using the cosine of the angle between the species and cluster centres to measure the similarity of species to clusters. Results The clustering procedure classified 2793 taxa into 18 floristic elements, which included between 66 and 289 taxa; two species had unique, non‐overlapping distributions and could not be classified. Main conclusions The analysis highlights the floristic diversity of the mountains of central and southern Europe, and of the Mediterranean region. The floristic elements of northern latitudes and the temperate lowlands tend to be composed of wide‐ranging species and include only a low proportion of European endemics. The montane elements, including those centred on montane areas in the Mediterranean region, are composed predominantly of perennial species and include high or very high proportions of European endemics. Classifications that recognize one ‘Alpine’ and one ‘Mediterranean’ biogeographical zone in Europe fail to reflect this floristic diversity.
The UK Initial Operational Response (IOR) to chemical incidents includes improvised decontamination procedures, which use readily available materials to rapidly reduce risk to potentially exposed persons. A controlled, cross-over human volunteer study was conducted to investigate the effectiveness of improvised dry and wet decontamination procedures on skin, both alone, and in sequence. A simulant contaminant, methyl salicylate (MeS) in vegetable oil with a fluorophore was applied to three locations (shoulder, leg, arm). Participants then received no decontamination (control) or attempted to remove the simulant using one of three improvised protocols (dry decontamination; wet decontamination; combined dry and wet decontamination). Simulant remaining on the skin following decontamination was quantified using both Gas Chromatography Tandem Mass Spectrometry (GC-MSMS) for analysis of MeS and UV imaging to detect fluorophores. Additionally, urine samples were collected for 24 hours following application for analysis of MeS. Significantly less simulant was recovered from skin following each improvised decontamination protocol, compared to the no decontamination control. Further, combined dry and wet decontamination resulted in lower recovery of simulant when compared to either dry or wet decontamination alone. Irrespective of decontamination protocol, significantly more simulant remained on the shoulders compared to either the arms or legs, suggesting that improvised decontamination procedures are less effective for difficult to reach areas of the body. There was no effect of decontamination on excreted MeS in urine over 24 hours. Overall, findings indicate that improvised decontamination is an effective means of rapidly removing contaminants from skin, and combinations of improvised approaches can increase effectiveness in the early stages of decontamination and in the absence of specialist resources at an incident scene. However, the variable control and consistency of improvised decontamination techniques means that further intervention is likely to be needed, particularly for less accessible areas of the body.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.