SignificanceWe project drought losses in China under global warming of 1.5 °C and 2.0 °C. To assess future drought losses, we project the regional gross domestic product under shared socioeconomic pathways instead of using a static socioeconomic scenario. We identify increasing precipitation and evapotranspiration patterns. With increasing drought intensity and areal coverage across China, drought losses will increase considerably. The estimated losses in a sustainable development pathway at 1.5 °C warming will be 10 times higher than in the reference period 1986–2005 and three times higher than in 2006–2015. Yet, climate change mitigation, limiting the temperature increase to 1.5 °C, can considerably reduce the annual drought losses in China, compared with 2.0 °C warming.
Spatial and temporal characteristics of precipitation trends in the Zhujiang River basin, South China, are analyzed. Nonparametric trend tests are applied to daily precipitation data from 192 weather stations between 1961 and 2007 for the following indices: annual, monthly, and daily precipitation; annual and monthly number of rain days and precipitation intensity; annual and monthly maximum precipitation; 5-day maximum precipitation, number of rainstorms with >50 mm day−1, and peaks over thresholds (90th, 95th, and 99th percentile).
The results show that few stations experienced trends in the precipitation indices on an annual basis. On a monthly basis, significant positive and negative trends above the 90% confidence level appear in all months except December. Trends in the indices of monthly precipitation, rain intensity, rain days, and monthly maximum precipitation show very similar characteristics. They experience the most distinct negative (positive) trends in October (January). A change of the mean wind direction by 50° from east-southeast to east-northeast explains the downward trend in precipitation in October. Dry October months (months with low precipitation indices) can be observed when the mean wind direction is east-northeast (arid) instead of the prevailing mean wind direction, east-southeast (moist). The former is typical for the East Asian winter monsoon (EAWM). Nearly 90% of the driest October months can be explained by wind directions typical for the EAWM. The upward trend in precipitation indices in January cannot be explained by changes in large-scale circulation. The analysis of the precipitation indices delivers more detailed information on observed changes than other studies in the same area. This can be attributed to the higher station density, the quality of daily data, and the focus on monthly trends in the current study.
The increase in surface air temperature in China has been faster than the global rate, and more high temperature spells are expected to occur in future. Here we assess the annual heat-related mortality in densely populated cities of China at 1.5 °C and 2.0 °C global warming. For this, the urban population is projected under five SSPs, and 31 GCM runs as well as temperature-mortality relation curves are applied. The annual heat-related mortality is projected to increase from 32.1 per million inhabitants annually in 1986–2005 to 48.8–67.1 per million for the 1.5 °C warming and to 59.2–81.3 per million for the 2.0 °C warming, taking improved adaptation capacity into account. Without improved adaptation capacity, heat-related mortality will increase even stronger. If all 831 million urban inhabitants in China are considered, the additional warming from 1.5 °C to 2 °C will lead to more than 27.9 thousand additional heat-related deaths, annually.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.