Neurons containing the neuropeptide orexin (hypocretin) are located exclusively in the lateral hypothalamus and send axons to numerous regions throughout the central nervous system, including the major nuclei implicated in sleep regulation. Here, we report that, by behavioral and electroencephalographic criteria, orexin knockout mice exhibit a phenotype strikingly similar to human narcolepsy patients, as well as canarc-1 mutant dogs, the only known monogenic model of narcolepsy. Moreover, modafinil, an anti-narcoleptic drug with ill-defined mechanisms of action, activates orexin-containing neurons. We propose that orexin regulates sleep/wakefulness states, and that orexin knockout mice are a model of human narcolepsy, a disorder characterized primarily by rapid eye movement (REM) sleep dysregulation.
Pharmacological manipulation of specific neural circuits to optimize therapeutic index is an unrealized goal in neurology and psychiatry. AMPA receptors are important for excitatory synaptic transmission, and their antagonists are antiepileptic. Although efficacious, AMPA-receptor antagonists, including perampanel (Fycompa), the only approved antagonist for epilepsy, induce dizziness and motor impairment. We hypothesized that blockade of forebrain AMPA receptors without blocking cerebellar AMPA receptors would be antiepileptic and devoid of motor impairment. Taking advantage of an AMPA receptor auxiliary protein, TARP γ-8, which is selectively expressed in the forebrain and modulates the pharmacological properties of AMPA receptors, we discovered that LY3130481 selectively antagonized recombinant and native AMPA receptors containing γ-8, but not γ-2 (cerebellum) or other TARP members. Two amino acid residues unique to γ-8 determined this selectivity. We also observed antagonism of AMPA receptors expressed in hippocampal, but not cerebellar, tissue from an patient with epilepsy. Corresponding to this selective activity, LY3130481 prevented multiple seizure types in rats and mice and without motor side effects. These findings demonstrate the first rationally discovered molecule targeting specific neural circuitries for therapeutic advantage.
Activation of TGR5 via bile acids or bile acid analogs leads to the release of glucagon-like peptide-1 (GLP-1) from intestine, increases energy expenditure in brown adipose tissue, and increases gallbladder filling with bile. Here, we present compound 18, a non-bile acid agonist of TGR5 that demonstrates robust GLP-1 secretion in a mouse enteroendocrine cell line yet weak GLP-1 secretion in a human enteroendocrine cell line. Acute administration of compound 18 to mice increased GLP-1 and peptide YY (PYY) secretion, leading to a lowering of the glucose excursion in an oral glucose tolerance test (OGTT), while chronic administration led to weight loss. In addition, compound 18 showed a dose-dependent increase in gallbladder filling. Lastly, compound 18 failed to show similar pharmacological effects on GLP-1, PYY, and gallbladder filling in Tgr5 knockout mice. Together, these results demonstrate that compound 18 is a mouse-selective TGR5 agonist that induces GLP-1 and PYY secretion, and lowers the glucose excursion in an OGTT, but only at doses that simultaneously induce gallbladder filling. Overall, these data highlight the benefits and potential risks of using TGR5 agonists to treat diabetes and metabolic diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.