Toxicokinetic-toxicodynamic models (TKTD models) simulate the time-course of processes leading to toxic effects on organisms. Even for an apparently simple endpoint as survival, a large number of very different TKTD approaches exist. These differ in their underlying hypotheses and assumptions, although often the assumptions are not explicitly stated. Thus, our first objective was to illuminate the underlying assumptions (individual tolerance or stochastic death, speed of toxicodynamic damage recovery, threshold distribution) of various existing modeling approaches for survival and show how they relate to each other (e.g., critical body residue, critical target occupation, damage assessment, DEBtox survival, threshold damage). Our second objective was to develop a general unified threshold model for survival (GUTS), from which a large range of existing models can be derived as special cases. Specific assumptions to arrive at these special cases are made and explained. Finally, we illustrate how special cases of GUTS can be fitted to survival data. We envision that GUTS will help increase the application of TKTD models in ecotoxicological research as well as environmental risk assessment of chemicals. It unifies a wide range of previously unrelated approaches, clarifies their underlying assumptions, and facilitates further improvement in the modeling of survival under chemical stress.
A key challenge in ecotoxicology is to assess the potential risks of chemicals to the wide range of species in the environment on the basis of laboratory toxicity data derived from a limited number of species. These species are then assumed to be suitable surrogates for a wider class of related taxa. For example, Daphnia spp. are used as the indicator species for freshwater aquatic invertebrates. Extrapolation from these datasets to natural communities poses a challenge because the extent to which test species are representative of their various taxonomic groups is often largely unknown, and different taxonomic groups and chemicals are variously represented in the available datasets. Moreover, it has been recognized that physiological and ecological factors can each be powerful determinants of vulnerability to chemical stress, thus differentially influencing toxicant effects at the population and community level. Recently it was proposed that detailed study of species traits might eventually permit better understanding, and thus prediction, of the potential for adverse effects of chemicals to a wider range of organisms than those amenable for study in the laboratory. This line of inquiry stems in part from the ecology literature, in which species traits are being used for improved understanding of how communities are constructed, as well as how communities might respond to, and recover from, disturbance (see other articles in this issue). In the present work, we develop a framework for the application of traits-based assessment. The framework is based on the population vulnerability conceptual model of Van Straalen in which vulnerability is determined by traits that can be grouped into 3 major categories, i.e., external exposure, intrinsic sensitivity, and population sustainability. Within each of these major categories, we evaluate specific traits as well as how they could contribute to the assessment of the potential effects of a toxicant on an organism. We then develop an example considering bioavailability to explore how traits could be used mechanistically to estimate vulnerability. A preliminary inventory of traits for use in ecotoxicology is included; this also identifies the availability of data to quantify those traits, in addition to an indication of the strength of linkage between the trait and the affected process. Finally, we propose a way forward for the further development of traits-based approaches in ecotoxicology.
ECTV infection in mice models the course of human smallpox. Our data provide evidence to substantiate historical data on the usefulness of postexposure vaccination with conventional VACV and the new candidate MVA to protect against fatal orthopoxvirus infections.
Individual-based models (IBMs) are increasingly used to link the dynamics of individuals to higher levels of biological organization. Still, many IBMs are data hungry, species specific, and time-consuming to develop and analyze. Many of these issues would be resolved by using general theories of individual dynamics as the basis for IBMs. While such theories have frequently been examined at the individual level, few cross-level tests exist that also try to predict population dynamics. Here we performed a cross-level test of dynamic energy budget (DEB) theory by parameterizing an individual-based model using individual-level data of the water flea, Daphnia magna, and comparing the emerging population dynamics to independent data from population experiments. We found that DEB theory successfully predicted population growth rates and peak densities but failed to capture the decline phase. Further assumptions on food-dependent mortality of juveniles were needed to capture the population dynamics after the initial population peak. The resulting model then predicted, without further calibration, characteristic switches between small- and large-amplitude cycles, which have been observed for Daphnia. We conclude that cross-level tests help detect gaps in current individual-level theories and ultimately will lead to theory development and the establishment of a generic basis for individual-based models and ecology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.