Traditional control-flow analysis (CFA) for higher-order languages introduces spurious connections between callers and callees, and different invocations of a function may pollute each other's return flows. Recently, three distinct approaches have been published that provide perfect call-stack precision in a computable manner: CFA2, PDCFA, and AAC. Unfortunately, implementing CFA2 and PDCFA requires significant engineering effort. Furthermore, all three are computationally expensive. For a monovariant analysis, CFA2 is in O(2^n), PDCFA is in O(n^6), and AAC is in O(n^8). In this paper, we describe a new technique that builds on these but is both straightforward to implement and computationally inexpensive. The crucial insight is an unusual state-dependent allocation strategy for the addresses of continuations. Our technique imposes only a constant-factor overhead on the underlying analysis and costs only O(n^3) in the monovariant case. We present the intuitions behind this development, benchmarks demonstrating its efficacy, and a proof of the precision of this analysis.
Software contracts allow programmers to state rich program properties using the full expressive power of an object language. However, since they are enforced at runtime, monitoring contracts imposes significant overhead and delays error discovery. Soft contract verification aims to guarantee all or most of these properties ahead of time, enabling valuable optimizations and yielding a more general assurance of correctness. Existing methods for static contract verification satisfy the needs of more restricted target languages, but fail to address the challenges unique to those conjoining untyped, dynamic programming, higher-order functions, modularity, and statefulness. Our approach tackles all these features at once, in the context of the full Racket system-a mature environment for stateful, higher-order, multi-paradigm programming with or without types. Evaluating our method using a set of both pure and stateful benchmarks, we are able to verify 99.94% of checks statically (all but 28 of 49, 861).Stateful, higher-order functions pose significant challenges for static contract verification in particular. In the presence of these features, a modular analysis must permit code from the current module to escape permanently to an opaque context (unspecified code from outside the current module) that may be stateful and therefore store a reference to the escaped closure. Also, contracts themselves, being predicates written in unrestricted Racket, may exhibit stateful behavior; a sound approach must be robust to contracts which are arbitrarily expressive and interwoven with the code they monitor. In this paper, we present and evaluate our solution based on higher-order symbolic execution, explain the techniques we used to address such thorny issues, formalize a notion of behavioral approximation, and use it to provide a mechanized proof of soundness.
Sound malware analysis of Android applications is challenging. First, object-oriented programs exhibit highly interprocedural, dynamically dispatched control structure. Second, the Android programming paradigm relies heavily on the asynchronous execution of multiple entry points. Existing analysis techniques focus more on the second challenge, while relying on traditional analytic techniques that suffer from inherent imprecision or unsoundness to solve the first.We present Anadroid, a static malware analysis framework for Android apps. Anadroid exploits two techniques to soundly raise precision: (1) it uses a pushdown system to precisely model dynamically dispatched interprocedural and exception-driven control-flow; (2) it uses Entry-Point Saturation (EPS) to soundly approximate all possible interleavings of asynchronous entry points in Android applications. (It also integrates static taint-flow analysis and least permissions analysis to expand the class of malicious behaviors which it can catch.) Anadroid provides rich user interface support for human analysts which must ultimately rule on the "maliciousness" of a behavior.To demonstrate the effectiveness of Anadroid's malware analysis, we had teams of analysts analyze a challenge suite of 52 Android applications released as part of the Automated Program Analysis for Cybersecurity (APAC) DARPA program. The first team analyzed the apps using a version of Anadroid that uses traditional (finite-state-machinebased) control-flow-analysis found in existing malware analysis tools; the second team analyzed the apps using a version of Anadroid that uses our enhanced pushdown-based control-flow-analysis. We measured machine analysis time, human analyst time, and their accuracy in flagging malicious applications. With pushdown analysis, we found statistically significant (p < 0.05) decreases in time: from 85 minutes per app to 35 minutes per app in human plus maPermission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org. SPSM '13, November 8, 2013, Berlin, Germany. Copyright is held by the owner/author(s). Publication rights licensed to ACM. ACM 978-1-4503-2491-5/13/11 ...$15.00. http://dx.doi.org/10.1145/2516760.2516769. chine analysis time; and statistically significant (p < 0.05) increases in accuracy with the pushdown-driven analyzer: from 71% correct identification to 95% correct identification.
The polyvariance of a static analysis is the degree to which it structurally differentiates approximations of program values. Polyvariant techniques come in a number of different flavors that represent alternative heuristics for managing the trade-off an analysis strikes between precision and complexity. For example, call sensitivity supposes that values will tend to correlate with recent call sites, object sensitivity supposes that values will correlate with the allocation points of related objects, the Cartesian product algorithm supposes correlations between the values of arguments to the same function, and so forth. In this paper, we describe a unified methodology for implementing and understanding polyvariance in a higher-order setting (i.e., for control-flow analyses). We do this by extending the method of abstracting abstract machines (AAM), a systematic approach to producing an abstract interpretation of abstract-machine semantics. AAM eliminates recursion within a language's semantics by passing around an explicit store, and thus places importance on the strategy an analysis uses for allocating abstract addresses within the abstract heap or store. We build on AAM by showing that the design space of possible abstract allocators exactly and uniquely corresponds to the design space of polyvariant strategies. This allows us to both unify and generalize polyvariance as tunings of a single function. Changes to the behavior of this function easily recapitulate classic styles of analysis and produce novel variations, combinations of techniques, and fundamentally new techniques.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.