Increasingly complex systems lead to an interweaving of security, safety, availability and reliability concerns. Most dependability analysis techniques do not include security aspects. In order to include security, a holistic risk model for systems is needed. In our novel approach, the basic failure cause, failure mode and failure effect model known from FMEA is used as a template for a vulnerability cause-effect chain, and an FMEA analysis technique extended with security is presented. This represents a unified model for safety and security cause-effect analysis. As an example the technique is then applied to a distributed industrial measurement system.
The increasing integration of computational components and physical systems creates cyber-physical system, which provide new capabilities and possibilities for humans to control and interact with physical machines. However, the correlation of events in cyberspace and physical world also poses new safety and security challenges. This calls for holistic approaches to safety and security analysis for the identification of safety failures and security threats and a better understanding of their interplay. This paper presents the application of two promising methods, i.e. Failure Mode, Vulnerabilities and Effects Analysis (FMVEA) and Combined Harm Assessment of Safety and Security for Information Systems (CHASSIS), to a case study of safety and security co-analysis of cyber-physical systems in the automotive domain. We present the comparison, discuss their applicabilities, and identify future research needs.
Automotive systems become increasingly complex due to their functional range and data exchange with the outside world. Until now, functional safety of such safety-critical electrical/electronic systems has been covered successfully. However, the data exchange requires interconnection across trusted boundaries of the vehicle. This leads to security issues like hacking and malicious attacks against interfaces, which could bring up new types of safety issues. Before mass-production of automotive systems, evidences and arguments are required regarding two aspects. Product engineering has been done compliant to specific standards and supports arguments that the system is free of unreasonable safety and security risks. This paper shows a safety and security co-engineering framework, which covers standard compliant process derivation and management, and supports product specific safety and security co-analysis. Furthermore, we investigate processand product-related argumentation and apply the approach to an automotive use case regarding safety and security.Keywords: Safety and security co-engineering • process-and product-based argumentation • process and argumentation patterns • automotive domain • ISO 26262 • SAE J3061
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.