Abstract.A simple approach is presented for the modeling of complex oscillatory thermal-fluid systems capable of converting low grade heat into useful work. This approach is applied to the NIFTE, a novel low temperature difference heat utilization technology currently under development. Starting from a first-order linear dynamic model of the NIFTE that consists of a network of interconnected spatially lumped components, the effects of various component variables (geometric and other) on the thermodynamic efficiencies of the device are investigated parametrically. Critical components are highlighted that require careful design for the optimization of the device, namely the feedback valve, the power cylinder, the adiabatic volume and the thermal resistance in the heat exchangers. An efficient NIFTE design would feature a lower feedback valve resistance, with a shorter connection length and larger connection diameter; a smaller diameter but taller power cylinder; a larger (time-mean) combined vapor volume at the top part of the device; as well as improved heat transfer behavior (i.e. reduced thermal resistance) in the hot and cold heat exchanger blocks. These modifications have the potential of increasing the exergetic efficiency of the device by 50% points, corresponding to a 3.8% point increase in thermal efficiency.
We use a phase-separated driven two-dimensional Ising lattice gas to study fluid interfaces exposed to shear flow parallel to the interface. The interface is stabilized by two parallel walls with opposing surface fields, and a driving field parallel to the walls is applied which (i) either acts locally at the walls or (ii) varies linearly with distance across the strip. Using computer simulations with Kawasaki dynamics, we find that the system reaches a steady state in which the magnetization profile is the same as that in equilibrium, but with a rescaled length implying a reduction of the interfacial width. An analogous effect was recently observed in sheared phase-separated colloidal dispersions. Pair correlation functions along the interface decay more rapidly with distance under drive than in equilibrium and for cases of weak drive, can be rescaled to the equilibrium result.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.