SummaryTree species growing along the forest-grassland ecotone are near the moisture limit of their range. Small increases in temperature can increase vapor pressure deficit (VPD) which may increase tree water use and potentially hasten mortality during severe drought.We tested a 40% increase in VPD due to an increase in growing temperature from 30 to 33°C (constant dewpoint 21°C) on seedlings of 10 tree species common to the forest-grassland ecotone in the southern Great Plains, USA.Measurement at 33 vs 30°C during reciprocal leaf gas exchange measurements, that is, measurement of all seedlings at both growing temperatures, increased transpiration for seedlings grown at 30°C by 40% and 20% for seedlings grown at 33°C. Higher initial transpiration of seedlings in the 33°C growing temperature treatment resulted in more negative xylem water potentials and fewer days until transpiration decreased after watering was withheld. The seedlings grown at 33°C died 13% (average 2 d) sooner than seedlings grown at 30°C during terminal drought.If temperature and severity of droughts increase in the future, the forest-grassland ecotone could shift because low seedling survival rate may not sufficiently support forest regeneration and migration.
Water stress and temperature impose fundamental limits to forest productivity. Stresses caused by fluctuating or extreme temperatures or limited water availability vary both seasonally and from year to year. The role of these stresses should be considered when investigating the causes of declines in forest productivity. Forest growth, or carbon gain, can be related quantitatively to three components: leaf area, rate of net photosynthesis and rate of respiration. This paper examines effects of temperature and water supply on these components with particular reference to loblolly pine (Pinus taeda L.), a species of economic importance in the southeastern United States where declines, of unknown cause, in forest productivity have been reported.
A 10-year-old stand of loblolly pine (Pinustaeda L.) in southeastern Oklahoma was thinned to three target basal-area levels: 5.8, 11.5, and 23 m2•ha−1 (control). Specific gravity, latewood percentage, date of transition from earlywood to latewood, growth, and climate variables were measured for 2 years after thinning. Variation in the measured wood properties was more influenced by climatic variation than by the thinning treatments. Diameter growth and per-tree basal-area growth were significantly greater on the thinned treatments both years after thinning. However, stand basal-area growth was greatest on the unthinned treatment. Basal-area growth rates were significantly related to stand basal area, tree size, soil water potential, and air temperature. Early in the summer, growth was positively related to mean daily temperature, while later in the summer, growth was negatively related to mean daily temperature, reflecting the influence of high-temperature stress on growth. A year with high summer rainfall (1984) resulted in wood with a higher percentage of latewood and higher specific gravity than wood produced in a year with low summer rainfall (1985). The date of latewood initiation was significantly related to tree size, soil moisture, and evaporative demand. The date of transition from earlywood to latewood occurred 10–14 days sooner on the unthinned plots in both years. However, annual ring latewood percentage and specific gravity were not significantly affected by thinning. Increased late-season growth rates compensated for the later transition date on the thinned treatments, resulting in no net change in ring latewood percentage due to thinning. The results indicate that individual tree basal-area growth can be increased by thinning without reducing wood density.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.