The quality of service of mobile satellite reception can be improved by using multi-satellite diversity (angle diversity). The recently finalised MiLADY project targeted therefore on the evaluation and modelling of the multi-satellite propagation channel for land mobile users with focus on broadcasting applications. The narrowband model combines the parameters from two measurement campaigns: In the U.S. the power levels of the Satellite Digital Audio Radio Services were recorded with a high sample rate to analyse fast and slow fading effects in great detail. In a complementary campaign signals of Global Navigation Satellite Systems (GNSS) were analysed to obtain information about the slow fading correlation for almost any satellite constellation. The new channel model can be used to generate time series for various satellite constellations in different environments. This article focuses on realistic state sequence modelling for angle diversity, confining on two satellites. For this purpose, different state modelling methods providing a joint generation of the states 'good good', 'good bad', 'bad good' and 'bad bad' are compared. Measurements and re-simulated data are analysed for various elevation combinations and azimuth separations in terms of the state probabilities, state duration statistics, and correlation coefficients. The finally proposed state model is based on semi-Markov chains assuming a log-normal state duration distribution.
This paper focuses on the achievable angle diversity gain in mobile satellite broadcasting in various environments. Multiple satellite signals within the S-band were recorded simultaneously along the east coast of the U.S. over a traveling distance of 3700 km. The first-order statistical data analysis shows that the required C/N margin for a certain service availability can be significantly decreased by combining two satellite signals. Depending on their elevation angles, the diversity combining gain is analyzed in terms of cumulative distribution functions (CDFs) for various environments. The results for angle diversity are compared to time diversity using an interleaver of variable length. Combining angle diversity and time interleaving results in a further improvement of the service availability
Providing reliable low latency wireless links for advanced manufacturing and processing systems is a vision of Industry 4.0. Developing, testing and rating requires accurate models of the radio propagation channel. The current 3GPP-NR model as well as the QuaDRiGa model lack the propagation parameters for the industrial indoor scenario. To close this gap, measurements were conducted at 2.37 GHz and 5.4 GHz at operational Siemens premises in Nuremberg, Germany. Furthermore, the campaign was planned to allow the test and parameterization of new features of the QuaDRiGa channel model such as support for device-to-device (D2D) radio links and spatial consistency. A total of 5.9 km measurement track was used to extract the statistical model parameters for line of sight (LOS) and Non-LOS propagation conditions. It was found that the metallic walls and objects in the halls create a rich scattering environment, where a large number of multipath components arrive at the receiver from all directions. This leads to a robust communication link, provided that the transceivers can handle the interference. The extracted parameters can be used in geometric-stochastic channel models such as QuaDRiGa to support simulation studies, both on link and system level.
An open ITS platform combining interactive satellite services with other communication channels is being developed and evaluated in field trials within the SafeTRIP project [1]. Prototyping and in-field validation of a novel waveform for messaging return channel over satellite for land mobile is an important objective of the project. The overall system architecture has recently been standardized by ETSI under the name of S-MIM (S-band Mobile Interactive Multimedia). The messaging protocol, described in the Part 3 of the standard, is based on the Enhanced Spread Spectrum Aloha (E-SSA). Its main asset resides in the low power required at the transmitter, which will allow the reuse of off-the-shelf power amplifiers and low-cost omnidirectional antennas. This paper will present a comprehensive summary of previous E-SSA performance analysis from simulations and the first field trials results using the E-SSA waveform. The presented results have been derived from static and mobile field trials carried out in Germany with fully functional E-SSA modulator and demodulator prototypes and the EUTELSAT10A satellite. Results for the static and mobile performance of the E-SSA demonstrator with an omni-directional antenna under Line-of-sight (LOS) conditions are presented. The measured Packet Error Rates of transmissions via satellite at different terminal power levels confirm the theoretical link budget calculations for single and multiple simultaneously transmitting terminals. The degradation due to fading effects of the transmission channel under mobile conditions has been measured during the trials to approx. 3 dB. The resulting overall required transmitter power in the multi-user scenario of the trials setup has been only -3 dBW to reach a high QoS under mobile conditions. This value confirms the suitability of the E-SSA waveform for interactive mobile services for the mass market
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.