Modular polyketide synthases (PKSs) are giant bacterial enzymes that synthesize many polyketides of therapeutic value. In contrast to PKSs that provide acyltransferase (AT) activities in cis, trans-AT PKSs lack integrated AT domains and exhibit unusual enzymatic features with poorly understood functions in polyketide assembly. This has retarded insight into the assembly of products such as mupirocin, leinamycin and bryostatin 1. We show that trans-AT PKSs evolved in a fundamentally different fashion from cis-AT systems, through horizontal recruitment and assembly of substrate-specific ketosynthase (KS) domains. The insights obtained from analysis of these KS mosaics will facilitate both the discovery of novel polyketides by genome mining, as we demonstrate for the thailandamides of Burkholderia thailandensis, and the extraction of chemical information from short trans-AT PCR products, as we show using metagenomic DNA of marine sponges. Our data also suggest new strategies for dissecting polyketide biosynthetic pathways and engineering polyketide assembly.
In this study, we present a single-cell genomics approach for the functional characterization of the candidate phylum Poribacteria, members of which are nearly exclusively found in marine sponges. The microbial consortia of the Mediterranean sponge Aplysina aerophoba were singularized by fluorescence-activated cell sorting, and individual microbial cells were subjected to phi29 polymerase-mediated 'whole-genome amplification'. Pyrosequencing of a single amplified genome (SAG) derived from a member of the Poribacteria resulted in nearly 1.6 Mb of genomic information distributed among 554 contigs analyzed in this study. Approximately two-third of the poribacterial genome was sequenced. Our findings shed light on the functional properties and lifestyle of a possibly ancient bacterial symbiont of marine sponges. The Poribacteria are mixotrophic bacteria with autotrophic CO 2 -fixation capacities through the Wood-Ljungdahl pathway. The cell wall is of Gram-negative origin. The Poribacteria produce at least two polyketide synthases (PKSs), one of which is the sponge-specific Sup-type PKS. Several putative symbiosis factors such as adhesins (bacterial Ig-like domains, lamininin G domain proteins), adhesin-related proteins (ankyrin, fibronectin type III) and tetratrico peptide repeat domain-encoding proteins were identified, which might be involved in mediating sponge-microbe interactions. The discovery of genes coding for 24-isopropyl steroids implies that certain fossil biomarkers used to date the origins of metazoan life on earth may possibly be of poribacterial origin. Single-cell genomic approaches, such as those shown herein, contribute to a better understanding of beneficial microbial consortia, of which most members are, because of the lack of cultivation, inaccessible by conventional techniques.
The development of bio-resorbable implant materials is rapidly going on. Sterilization of those materials is inevitable to assure the hygienic requirements for critical medical devices according to the medical device directive (MDD, 93/42/EG). Biopolymer-containing biomaterials are often highly sensitive towards classical sterilization procedures like steam, ethylene oxide treatment or gamma irradiation. Supercritical CO2 (scCO2) treatment is a promising strategy for the terminal sterilization of sensitive biomaterials at low temperature. In combination with low amounts of additives scCO2 treatment effectively inactivates microorganisms including bacterial spores. We established a scCO2 sterilization procedure under addition of 0.25% water, 0.15% hydrogen peroxide and 0.5% acetic anhydride. The procedure was successfully tested for the inactivation of a wide panel of microorganisms including endospores of different bacterial species, vegetative cells of gram positive and negative bacteria including mycobacteria, fungi including yeast, and bacteriophages. For robust testing of the sterilization effect with regard to later application of implant materials sterilization all microorganisms were embedded in alginate/agarose cylinders that were used as Process Challenge Devices (PCD). These PCD served as surrogate models for bioresorbable 3D scaffolds. Furthermore, the impact of scCO2 sterilization on mechanical properties of polysaccharide-based hydrogels and collagen-based scaffolds was analyzed. The procedure was shown to be less compromising on mechanical and rheological properties compared to established low-temperature sterilization methods like gamma irradiation and ethylene oxide exposure as well as conventional steam sterilization. Cytocompatibility of alginate gels and scaffolds from mineralized collagen was compared after sterilization with ethylene oxide, gamma irradiation, steam sterilization and scCO2 treatment. Human mesenchymal stem cell viability and proliferation were not compromised by scCO2 treatment of these materials and scaffolds. We conclude that scCO2 sterilization under addition of water, hydrogen peroxide and acetic anhydride is a very effective, gentle, non-cytotoxic and thus a promising alternative sterilization method especially for biomaterials.
Many marine sponges contain massive numbers of largely uncultivated, phylogenetically diverse bacteria that seem to be important contributors to the chemistry of these animals. Insights into the diversity, origin, distribution, and function of their metabolic gene communities are crucial to dissect the chemical ecology and biotechnological potential of sponge symbionts. This study reveals a sharp dichotomy between high and low microbial abundance sponges with respect to polyketide synthase (PKS) gene content, the presence of methyl-branched fatty acids, and the presence of members of the symbiotic candidate phylum "Poribacteria". For the symbiont-rich sponge Cacospongia mycofijiensis, a source of the tubulin-inhibiting fijianolides (=laulimalides), near-exhaustive large-scale sequencing of PKS gene-derived PCR amplicons was conducted. Although these amplicons exhibit high diversity at the sequence level, almost all of them belong to a single, architecturally unique group of PKSs present in "Poribacteria" and are proposed to synthesize methyl-branched fatty acids. Three components of this PKS were studied in vitro, providing initial insight into its biochemistry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.