Complex interactions between the host and the gut microbiota govern intestinal homeostasis but remain poorly understood. Here we reveal a relationship between gut microbiota and caspase recruitment domain family member 9 (CARD9), a susceptibility gene for inflammatory bowel disease (IBD) that functions in the immune response against microorganisms. CARD9 promotes recovery from colitis by promoting interleukin (IL)-22 production, and Card9−/− mice are more susceptible to colitis. The microbiota is altered in Card9−/− mice, and transfer of the microbiota from Card9−/− to wild-type, germ-free recipients increases their susceptibility to colitis. The microbiota from Card9−/− mice fails to metabolize tryptophan into metabolites that act as aryl hydrocarbon receptor (AHR) ligands. Intestinal inflammation is attenuated after inoculation of mice with three Lactobacillus strains capable of metabolizing tryptophan or by treatment with an AHR agonist. Reduced production of AHR ligands is also observed in the microbiota from individuals with IBD, particularly in those with CARD9 risk alleles associated with IBD. Our findings reveal that host genes affect the composition and function of the gut microbiota, altering the production of microbial metabolites and intestinal inflammation.
Short hairpin RNA (shRNA) technology enables stable and regulated gene repression. For establishing experimentally versatile RNAi tools and minimizing toxicities, synthetic shRNAs can be embedded into endogenous microRNA contexts. However, due to our incomplete understanding of microRNA biogenesis, such "shRNAmirs" often fail to trigger potent knockdown, especially when expressed from a single genomic copy. Following recent advances in design of synthetic shRNAmir stems, here we take a systematic approach to optimize the experimental miR-30 backbone. Among several favorable features, we identify a conserved element 3' of the basal stem as critically required for optimal shRNAmir processing and implement it in an optimized backbone termed "miR-E", which strongly increases mature shRNA levels and knockdown efficacy. Existing miR-30 reagents can be easily converted to miR-E, and its combination with up-to-date design rules establishes a validated and accessible platform for generating effective single-copy shRNA libraries that will facilitate the functional annotation of the genome.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.