Abstract-We deployed 72 sensors of 10 modalities in 15 wireless and wired networked sensor systems in the environment, in objects, and on the body to create a sensor-rich environment for the machine recognition of human activities. We acquired data from 12 subjects performing morning activities, yielding over 25 hours of sensor data. We report the number of activity occurrences observed during post-processing, and estimate that over 13000 and 14000 object and environment interactions occurred. We describe the networked sensor setup and the methodology for data acquisition, synchronization and curation. We report on the challenges and outline lessons learned and best practice for similar large scale deployments of heterogeneous networked sensor systems. We evaluate data acquisition quality for on-body and object integrated wireless sensors; there is less than 2.5% packet loss after tuning. We outline our use of the dataset to develop new sensor network self-organization principles and machine learning techniques for activity recognition in opportunistic sensor configurations. Eventually this dataset will be made public.
Opportunistic sensing allows to efficiently collect information about the physical world and the persons behaving in it. This may mainstream human context and activity recognition in wearable and pervasive computing by removing requirements for a specific deployed infrastructure. In this paper we introduce the newly started European research project OPPORTUNITY within which we develop mobile opportunistic activity and context recognition systems. We outline the project's objective, the approach we follow along opportunistic sensing, data processing and interpretation, and autonomous adaptation and evolution to environmental and user changes, and we outline preliminary results.
Many modern and growing cities are facing declines in public transport usage, with few efficient methods to explain why. In this article, we show that urban mobility patterns and transport mode choices can be derived from cellphone call detail records coupled with public transport data recorded from smart cards. Specifically, we present new data mining approaches to determine the spatial and temporal variability of public and private transportation usage and transport mode preferences across Singapore. Our results, which were validated by Singapore's quadriennial Household Interview Travel Survey (HITS), revealed that there are 3.5 million public and 4.3 million private inter-district trips (HITS: 3.5 million and 4.4 million, respectively). Along with classifying which transportation connections are weak, the analysis shows that the mode share of public transport use increases from 38 % in the morning to 44 % around mid-day and 52 % in the evening.
Understanding how people use public transport is important for the operation and future planning of the underlying transport networks. We have therefore developed and deployed a tra c measurement system for a key player in the transportation industry to gain insights into crowd behavior for planning purposes. The system has been in operation for several months and reports, at hourly intervals, (1) the crowdedness of subway stations, (2) the flows of people inside interchange stations, and (3) the expected travel time for each possible route in the subway network of Singapore. The core of our system is an e cient algorithm which detects individual subway trips from anonymized real-time data generated by the location based system of Singtel, the country's largest telecommunications company. To assess the accuracy of our system, we engaged an independent market research company to conduct a field study-a manual count of the number of passengers boarding and disembarking at a selected station on three separate days. A strong correlation between the calculations of our algorithm and the manual counts was found. One of our key findings is that travelers do not always choose the route with the shortest travel time in the subway network of Singapore. We have therefore also been developing a mobile app which allows users to plan their trips based on the average travel time between stations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.