Abstract-Fingerprint-based methods are widely adopted for indoor localization purpose because of their cost-effectiveness compared to other infrastructure-based positioning systems. However, the popular location fingerprint, Received Signal Strength (RSS), is observed to differ significantly across different devices' hardware even under the same wireless conditions. We derive analytically a robust location fingerprint definition, the Signal Strength Difference (SSD), and verify its performance experimentally using a number of different mobile devices with heterogeneous hardware. Our experiments have also considered both Wi-Fi and Bluetooth devices, as well as both access-point-based localization and mobile-node-assisted localization. We present the results of two well-known localization algorithms (K Nearest Neighbor and Bayesian Inference) when our proposed fingerprint is used, and demonstrate its robustness when the testing device differs from the training device. We also compare these SSD based localization algorithms' performance against that of two other approaches in the literature that are designed to mitigate the effects of mobile node hardware variations, and show that SSD based algorithms have better accuracy.
Abstract-Indoor localization techniques using location fingerprints are gaining popularity because of their cost-effectiveness compared to other infrastructure-based location systems. However, their reported accuracy fall short of their counterparts. In this paper, we investigate many aspects of fingerprint-based location systems in order to enhance their accuracy. First, we derive analytically a robust location fingerprint definition, and then verify it experimentally as well. We also devise a way to facilitate under-trained location systems through simple linear regression technique. This technique reduces the training time and effort, and can be particularly useful when the surrounding or setup of the localization area changes. We further show experimentally that because of the positions of some access points or the environmental factors around them, their signal strength correlates nicely with distance. We argue that it would be more beneficial to give special consideration to these access points for location computation, owing to their ability to distinguish locations distinctly in signal space. The probability of encountering such access points will be even higher when we denote a location's signature using the signals of multiple wireless technologies collectively. We present the results of two well-known localization algorithms (K-Nearest Neighbor and Bayesian Probabilistic Model) when the above factors are exploited, using Bluetooth and Wi-Fi signals. We have observed significant improvement in their accuracy when our ideas are implemented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.