Breathing techniques are part of traditional relaxation methods; however, their influence on psychophysiological variables related to sleep is still unclear. Consequently, the aim of this paper was to investigate the influence of a 30-day slow-paced breathing intervention compared to social media use on subjective sleep quality and cardiac vagal activity (CVA, operationalized via high-frequency heart rate variability). Healthy participants (n = 64, 33 male, 31 female, M = 22.11, SD = 3.12) were randomly allocated to an experimental or control group. In the experimental group, they had to perform slow-paced breathing for 15 min each evening across a 30-day period. This was administered through a smartphone application. The control group used social media (e.g., Facebook, Instagram, Whatsapp) for the same duration. The night before and after the intervention, their CVA was assessed via a light portable Electrocardiogram (ECG) device, and they had to fill out the Pittsburgh Sleep Quality Index questionnaire. Results showed that in comparison to the use of social media, the slow-paced breathing technique improved subjective sleep quality and increased overnight CVA, while a tendency was observed for morning awakening CVA. Slow-paced breathing appears a promising cost-effective technique to improve subjective sleep quality and cardiovascular function during sleep in young healthy individuals.
This research aims to investigate whether slow-paced breathing (SPB) improves adaptation to psychological stress, and specifically inhibition, when it is performed before or after physical exertion (PE). According to the resonance model, SPB is expected to increase cardiac vagal activity (CVA). Further, according to the neurovisceral integration model, CVA is positively linked to executive cognitive performance, and would thus play a role in the adaptation to psychological stress. We hypothesized that SPB, in comparison to a control condition, will induce a better adaptation to psychological stress, measured via better inhibitory performance. Two within-subject experiments were conducted with athletes: in the first experiment ( N = 60) SPB (or control – neutral TV documentary) was realized before PE (“relax before PE”), and in the second experiment ( N = 60) SPB (or the watching TV control) was realized after PE (“relax after PE”). PE consisted of 5 min Burpees, a physical exercise involving the whole body. In both experiments the adaptation to psychological stress was investigated with a Stroop task, a measure of inhibition, which followed PE. Perceived stress increased during PE (partial η 2 = 0.63) and during the Stroop task (partial η 2 = 0.08), and decreased during relaxation (partial η 2 = 0.15), however, no effect of condition was found. At the physiological level PE significantly increased HR, RF, and decreased CVA [operationalized in this research via the root mean square of successive differences (RMSSD)] in both experiments. Further, the number of errors in the incongruent category (Stroop interference accuracy) was found to be lower in the SPB condition in comparison to the control condition, however, these results were not mediated by RMSSD. Additionally, the Stroop interference [reaction times (RTs)] was found to be lower overall in “relax before PE,” however, no effect was found regarding SPB and Stroop interference (RTs). Overall, our results suggest that SPB realized before or after PE has a positive effect regarding adaptation to psychological stress and specifically inhibition, however, the underlying mechanisms require further investigation.
Abstract. The aim of this experiment was to test the immediate effects of slow-paced breathing on executive function. Slow-paced breathing is suggested to increase cardiac vagal activity, and the neurovisceral integration model predicts that higher cardiac vagal activity leads to better executive functioning. In total, 78 participants (41 men, 37 women; Mage = 23.22 years) took part in two counterbalanced experimental conditions: a 3 × 5 min slow-paced breathing condition and a television viewing control condition. After each condition, heart rate variability was measured and participants performed three executive function tasks: the color-word match Stroop (inhibition), the automated operation span task (working memory), and the modified card sorting task (cognitive flexibility). Results showed that performance on executive function tasks was better after slow-paced breathing compared to control, with higher scores observed for Stroop interference accuracy, automated operation span score, and perseverative errors, but not Stroop interference reaction times. This difference in executive function between experimental conditions was not mediated by cardiac vagal activity. Therefore, findings only partially align with predictions of the neurovisceral integration model. Slow-paced breathing appears a promising technique to improve immediate executive function performance. Further studies are recommended that address possible alternative underlying mechanisms and long-term effects.
This is an open access article under the terms of the Creat ive Commo ns Attri butio n-NonCo mmerc ial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.