This paper presents a grasp force regulation strategy for precision grasps. The strategy makes no assumptions about object properties and surface characteristics and can be used with a wide range of grippers. It has two components: a slip signal detector that computes the magnitude of slip and a grasping force set point generator that acts on the detector's output. The force set point generator is designed to ensure that slip is eliminated without using excessive force. This is particularly important in several situations like grasping fragile objects or in-hand manipulation of thin small objects. Several experiments were conducted to simulate various grasping scenarios with different objects. Results show that the strategy was very successful in dealing with uncertainty in object mass, surface characteristics, or rigidity. The strategy is also insensitive to robot motion.
BackgroundDrug resistance testing is mandatory in antiretroviral therapy in human immunodeficiency virus (HIV) infected patients for successful treatment. The emergence of resistances against antiretroviral agents remains the major obstacle in inhibition of viral replication and thus to control infection. Due to the high mutation rate the virus is able to adapt rapidly under drug pressure leading to the evolution of resistant variants and finally to therapy failure.ResultsWe developed a web service for drug resistance prediction of commonly used drugs in antiretroviral therapy, i.e., protease inhibitors (PIs), reverse transcriptase inhibitors (NRTIs and NNRTIs), and integrase inhibitors (INIs), but also for the novel drug class of maturation inhibitors. Furthermore, co-receptor tropism (CCR5 or CXCR4) can be predicted as well, which is essential for treatment with entry inhibitors, such as Maraviroc. Currently, SHIVA provides 24 prediction models for several drug classes. SHIVA can be used with single RNA/DNA or amino acid sequences, but also with large amounts of next-generation sequencing data and allows prediction of a user specified selection of drugs simultaneously. Prediction results are provided as clinical reports which are sent via email to the user.ConclusionsSHIVA represents a novel high performing alternative for hitherto developed drug resistance testing approaches able to process data derived from next-generation sequencing technologies. SHIVA is publicly available via a user-friendly web interface.
Human infants are able to acquire natural language seemingly easily at an early age. Their language learning seems to occur simultaneously with learning other cognitive functions as well as with playful interactions with the environment and caregivers. From a neuroscientific perspective, natural language is embodied, grounded in most, if not all, sensory and sensorimotor modalities, and acquired by means of crossmodal integration. However, characterizing the underlying mechanisms in the brain is difficult and explaining the grounding of language in crossmodal perception and action remains challenging. In this paper, we present a neurocognitive model for language grounding which reflects bio-inspired mechanisms such as an implicit adaptation of timescales as well as end-to-end multimodal abstraction. It addresses developmental robotic interaction and extends its learning capabilities using larger-scale knowledge-based data. In our scenario, we utilize the humanoid robot NICO in obtaining the EMIL data collection, in which the cognitive robot interacts with objects in a children's playground environment while receiving linguistic labels from a caregiver. The model analysis shows that crossmodally integrated representations are sufficient for acquiring language merely from sensory input through interaction with objects in an environment. The representations self-organize hierarchically and embed temporal and spatial information through composition and decomposition. This model can also provide the basis for further crossmodal integration of perceptually grounded cognitive representations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.