The p16INK4a cyclin-dependent kinase inhibitor is implicated in replicative senescence, the state of permanent growth arrest provoked by cumulative cell divisions or as a response to constitutive Ras-Raf-MEK signalling in somatic cells. Some contribution to senescence presumably underlies the importance of p16INK4a as a tumour suppressor but the mechanisms regulating its expression in these different contexts remain unknown. Here we demonstrate a role for the Ets1 and Ets2 transcription factors based on their ability to activate the p16INK4a promoter through an ETS-binding site and their patterns of expression during the lifespan of human diploid fibroblasts. The induction of p16INK4a by Ets2, which is abundant in young human diploid fibroblasts, is potentiated by signalling through the Ras-Raf-MEK kinase cascade and inhibited by a direct interaction with the helix-loop-helix protein Id1 (ref. 11). In senescent cells, where the Ets2 levels and MEK signalling decline, the marked increase in p16INK4a expression is consistent with the reciprocal reduction of Id1 and accumulation of Ets1.
Deregulation of D-type cyclin-dependent kinases (CDK4 and 6) is widely observed in various human cancers, illustrating their importance in cell cycle control. Like other cyclin-dependent kinases (CDKs), assembly with cyclins is the most critical step for activation of CDK4/ 6. As previously reported elsewhere, we observed that the level of cyclinD1-CDK4 complex and its associated kinase activity were significantly low in asynchronously proliferating mouse embryo fibroblasts lacking both p21 Cip1 and p27 Kip1 (p21/p27-null MEFs). These evidences imply that p21 Cip1 and p27 Kip1 CDK inhibitors are 'essential activators' of cyclin D-kinases. We, however, discovered here that both the assembly and activation of cyclin D1-CDK4 complex occur when quiescent p21/p27-null MEFs were stimulated to re-enter the cell cycle. This mitogen-induced cyclin D1-kinase activity was blocked by overexpression of p16 INK4a and resulted in the inhibition of S phase entry in p21/p27-null MEFs. Furthermore, ectopic expression of p34 SEI-1 , a mitogen-induced CDK4 binding protein, increased the levels of active cyclinD1-CDK4 complex in asynchronously proliferating p21/p27-null MEFs. Together, our results suggest that there are several independent ways to stimulate the assembly of cyclin D1-CDK4 kinases. Although p21 Cip1 and p27 Kip1 play a role in this process, our results demonstrate that additional mechanisms must occur in G0 to S phase transition.
We have screened for CDKN2A germline mutations in 49 Jewish families with two or more cases of melanoma. The Val59Gly mutation, one of the three different alterations identified among these families, was also detected independently in two kindreds from France and one from Spain. The impact of the Val59Gly substitution on the function of the cyclin-dependent kinase inhibitor p16INK4a , a product of the CDKN2A gene, was assessed by protein -protein interaction and cell proliferation assays and related to potential structural alterations predicted by molecular modeling. Seven microsatellite markers in the vicinity of the CDKN2A gene were used to determine whether the mutation in these families is identical by descent, or represents a mutational hotspot in the CDKN2A gene. Our results show that the Val59Gly substitution impairs p16INK4a function, and this dysfunction is consistent with structural predictions. All melanoma-affected individuals tested in the families under study harbor this mutation. Interestingly, the Israeli pedigree includes an affected individual who is homozygous for the Val59Gly mutation. A common haplotype of microsatellite markers has been demonstrated for mutation carriers in all four pedigrees. The Israeli pedigree and one of the French melanoma families are of Moroccan and Tunisian Jewish descent, respectively, and the other families originate from regions of France and Spain close to the Pyrenees. We conclude that the Val59Gly mutation is a major contributor to melanoma risk in the families under study and that it may derive from a single ancestral founder of Mediterranean (possibly Jewish) origin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.