Our functional evaluation of AIP mutations is consistent with a tumor-suppressor role for AIP and its involvement in familial acromegaly. The abnormal expression and subcellular localization of AIP in sporadic pituitary adenomas indicate deranged regulation of this protein during tumorigenesis.
The alternative product of the human INK4a/ARF locus, p14ARF, has the potential to act as a tumour suppressor by binding to and inhibiting the p53 antagonist MDM2. Current models propose that ARF function depends on its ability to sequester MDM2 in the nucleolus. Here we describe situations in which stabilization of MDM2 and p53 occur without relocalization of endogenous MDM2 from the nucleoplasm. Conversely, forms of ARF that do not accumulate in the nucleolus retain the capacity to stabilize MDM2 and p53. We therefore propose that nucleolar localization is not essential for ARF function but may enhance the availability of ARF to inhibit MDM2.
The CDKN2A tumour suppressor locus encodes two distinct proteins, p16 INK4a and p14 ARF , both of which have been implicated in replicative senescence, the state of permanent growth arrest provoked in somatic cells by aberrant proliferative signals or by cumulative population doublings in culture. Here we describe primary ®broblasts from a member of a melanomaprone family who is homozygous for an intragenic deletion in CDKN2A. Analyses of the resultant gene products imply that the cells are p16 INK4a de®cient but express physiologically relevant levels of a frameshift protein that retains the known functions of p14 ARF . Although they have a ®nite lifespan, the cells are resistant to arrest by oncogenic RAS. Indeed, ectopic expression of RAS and telomerase (hTERT) results in outgrowth of anchorage-independent colonies that have essentially diploid karyotypes and functional p53. We ®nd that in human ®broblasts, ARF is not induced demonstrably by RAS, pointing to signi®cant differences between the proliferative barriers implemented by the CDKN2A locus in different cell types or species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.