Neurotoxicity has been linked to a number of common drugs and chemicals, yet efficient and accurate methods to detect it are lacking. There is a need for more sensitive and specific biomarkers of neurotoxicity that can help diagnose and predict neurotoxicity that are relevant across animal models and translational from nonclinical to clinical data. Fluid-based biomarkers such as those found in serum, plasma, urine, and cerebrospinal fluid (CSF) have great potential due to the relative ease of sampling compared with tissues. Increasing evidence supports the potential utility of fluid-based biomarkers of neurotoxicity such as microRNAs, F2-isoprostanes, translocator protein, glial fibrillary acidic protein, ubiquitin C-terminal hydrolase L1, myelin basic protein, microtubule-associated protein-2, and total tau. However, some of these biomarkers such as those in CSF require invasive sampling or are specific to one disease such as Alzheimer’s, while others require further validation. Additionally, neuroimaging methodologies, including magnetic resonance imaging, magnetic resonance spectroscopy, and positron emission tomography, may also serve as potential biomarkers and have several advantages including being minimally invasive. The development of biomarkers of neurotoxicity is a goal shared by scientists across academia, government, and industry and is an ideal topic to be addressed via the Health and Environmental Sciences Institute (HESI) framework which provides a forum to collaborate on key challenging scientific topics. Here we utilize the HESI framework to propose a consensus on the relative potential of currently described biomarkers of neurotoxicity to assess utility of the selected biomarkers using a nonclinical model.
In the present article, we summarize the preclinical pharmacology of 4-{(R)-(3-aminophenyl)[4-(4-fluorobenzyl)-piperazin-1-yl]methyl}-N,N-diethylbenzamide (AZD2327), a highly potent and selective agonist of the ␦-opioid receptor. AZD2327 binds with sub-nanomolar affinity to the human opioid receptor (K i ϭ 0.49 and 0.75 nM at the C27 and F27 isoforms, respectively) and is highly selective (Ͼ1000-fold) over the human -and -opioid receptor subtypes as well as Ͼ130 other receptors and channels. In functional assays, AZD2327 shows full agonism at human ␦-opioid receptors ([ 35 S]GTP␥ EC 50 ϭ 24 and 9.2 nM at C27 and F27 isoforms, respectively) and also at the rat and mouse ␦-opioid receptors. AZD2327 is active in a wide range of models predictive of anxiolytic activity, including a modified Geller-Seifter conflict test and social interaction test, as well as in antidepressant models, including learned helplessness. In animals implanted with microdialysis probes and then given an acute stressor by pairing electric shock delivery with a flashing light, there is an increase in norepinephrine release into the prefrontal cortex associated with this acute anxiety state. Both the benzodiazepine anxiolytic standard diazepam and AZD2327 blocked this norepinephrine release equally well, and there was no evidence of tolerance to these effects of AZD2327. Overall, these data support the role of the ␦-opioid receptor in the regulation of mood, and data suggest that AZD2327 may possess unique antidepressant and anxiolytic activities that could make a novel contribution to the pharmacotherapy of psychiatric disorders.
The intraluminal suture model of transient middle cerebral artery occlusion (MCAO) in the Sprague Dawley strain of rats characteristically results in an inconsistently sized brain lesion. The purpose of the investigation reported here was to determine whether there were strong point‐to‐point correlations between the degree of cortical lesion size, as assessed in vivo using T2‐weighted magnetic resonance imaging (MRI) and corresponding cortical lesion size using routine histopathological techniques. Moreover, we aimed to investigate if cortical lesion size as determined by these two modalities correlates with neurological and/or skilled motor deficits observed in individual animals. Baseline behavioral scores were obtained on the animals prior to receiving 60 min of transient MCAO. Following MCAO, animals were tested for 1–21 days for neurological deficits. T2‐weighted MRIs of the cortex were taken at two and seven days post‐MCAO. At 30 and 60 days the rats were retested for forelimb dexterity in the staircase test. Subsequently, the cortex was examined for histopathological damage. Indeed, there were highly significant correlations between lesion size determined by MRI and histopathology. The degree of cortical damage observed in the T2‐weighted MRI, as well as the size of the histopathological lesions were, in turn, highly correlated with the degrees of deficiencies observed in the composite neurological assessments and with the deficits involving skilled use of the contralateral forepaw (damaged side).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.