The GaN on LGO system is the near perfect template (due to extremely high etch selectivity) for developing a viable thin film/compliant GaN substrate. Herein, we report on our efforts to grow GaN on LGO, including improvement of the microscopic surface morphology using pre-growthpretreatments. We also report on the first transferred thin film GaN substrate grown on LGO, transferred off of LGO, and mounted on GaAs. With this approach, (InAl)GaN alloys can be grown on thin GaN films, implementing a truly “compliant” substrate for the nitride alloy system. In addition, the flexibility of bonding to low cost Si, metal or standard ceramic IC packages is an attractive alternative to SiC and HVPE GaN substrates for optimizing cost verses thermal conductivity concerns. We have demonstratedhigh quality growth of GaN on LGO. X-Ray rocking curves of 145 arc-seconds are obtained with only a 0.28 μm thick film. We present data on the out of plane crystalline quality of GaN/LGO material. Likewise, we show 2 orders of magnitude improvement in residual doping concentration and factors of 4 improvement in electron mobility as compared to the only previously reported electrical data. We show substantial vendor to vendor and intra-vendor LGO material quality variations. We have also quantified the desorption of Ga and Li from the surface of LGO at typical growth temperatures using in situ desorption mass spectroscopy and XPS.
The sputter etching of NiFe thin films by Ar ions in a rf plasma has been studied and characterized with the use of a Langmuir probe. The NiFe sputter etch rate was found to depend strongly on incident ion energy, with the highest NiFe etch rates occurring at high rf bias power, low pressure, and moderate rf source power. NiFe etch rates initially increased with increasing rf source power, then saturated at higher rf source powers. Pressure had the weakest effect on NiFe etch rates. Empirically determined sputter yields based on the NiFe etch rates and ion current densities were calculated, and these compared favorably to sputter yields determined using the sputtering model proposed by Sigmund [Phys. Rev. 184, 383 (1969)].
The use of liquid hydrazine (N2H4) as a nitrogen source for nitridation reactions has been restricted because of safety, purity, and difficulties in using a liquid source. Hydrazine cyanurate (HC) is a stable solid complex of N2H4 which can be easily handled and purified before use and which evolves pure N2H4 upon heating, thus making it a promising source of N2H4 for nitridation reactions. In this article, a process for the synthesis of HC has been developed which decreases the H2O content of the evolved N2H4 from 10% when H2O was used as the solvent in the synthesis of HC to 0.7% by replacing H2O with dimethylsulfoxide as the solvent in the synthesis of HC. The use of the purified HC is demonstrated as a solid source in the nitridation of (100) GaAs substrates at 200 °C in a low pressure chemical vapor deposition reactor. The nitridated GaAs surfaces were analyzed by x-ray photoelectron spectroscopy and were found to be primarily comprised of GaN, GaAs, and Ga2O3. The ratio of the constituent peak heights in the Ga 3d peak of GaN to Ga2O3 was 2.25 in the grown nitride films. The oxide impurities were most likely due to incomplete removal of the native substrate oxide formed prior to growth and were not a product of the nitridation.
Lithium gallate (LGO) is an attractive, near lattice matched substrate for the growth of GaN. In addition, LGO substrates provide a convenient route to forming thin films of GaN as used in substrate removal or lift-off processes. We report the wet etching of LGO substrates for the production of GaN thin films. Two face-selective LGO etches have been used for the processing of substrates. The etch rate of the cation face is reported here for the first time and is 0.25 p.m min1 at 50CC. The etching solution is safe and benign to most materials including metallic bonding.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.