Cold tolerance is a key determinant of insect distribution and abundance, and thermal acclimation can strongly influence organismal stress tolerance phenotypes, particularly in small ectotherms like Drosophila. However, there is limited understanding of the molecular and biochemical mechanisms that confer such impressive plasticity. Here, we use high-throughput mRNA sequencing (RNA-seq) and liquid chromatography – mass spectrometry (LC-MS) to compare the transcriptomes and metabolomes of D. melanogaster acclimated as adults to warm (rearing) (21.5 °C) or cold conditions (6 °C). Cold acclimation improved cold tolerance and led to extensive biological reorganization: almost one third of the transcriptome and nearly half of the metabolome were differentially regulated. There was overlap in the metabolic pathways identified via transcriptomics and metabolomics, with proline and glutathione metabolism being the most strongly-supported metabolic pathways associated with increased cold tolerance. We discuss several new targets in the study of insect cold tolerance (e.g. dopamine signaling and Na+-driven transport), but many previously identified candidate genes and pathways (e.g. heat shock proteins, Ca2+ signaling, and ROS detoxification) were also identified in the present study, and our results are thus consistent with and extend the current understanding of the mechanisms of insect chilling tolerance.
To advance our understanding of adaptation to temporally varying selection pressures, we identified signatures of seasonal adaptation occurring in parallel among Drosophila melanogaster populations. Specifically, we estimated allele frequencies genome-wide from flies sampled early and late in the growing season from 20 widely dispersed populations. We identified parallel seasonal allele frequency shifts across North America and Europe, demonstrating that seasonal adaptation is a general phenomenon of temperate fly populations. Seasonally fluctuating polymorphisms are enriched in large chromosomal inversions and we find a broad concordance between seasonal and spatial allele frequency change. The direction of allele frequency change at seasonally variable polymorphisms can be predicted by weather conditions in the weeks prior to sampling, linking the environment and the genomic response to selection. Our results suggest that fluctuating selection is an important evolutionary force affecting patterns of genetic variation in Drosophila.
Two malic enzyme alleles, Men113A and Men 113G, occur at approximately equal frequency in North American populations of Drosophila melanogaster, while only Men 113A occurs in African populations. We investigated the population genetics, biochemical characteristics, and selective potential of these alleles. Comparable levels of nucleotide polymorphism in both alleles suggest that the Men 113G allele is not recently derived, but we find no evidence in the DNA sequence data for selection maintaining the polymorphism. Interestingly, the alleles differ in both V max and K m for the substrate malate. Triglyceride concentration and isocitrate dehydrogenase (IDH) and glucose-6-phosphate dehydrogenase (G6PD) activities are negatively correlated with the in vivo activities of the Men alleles. We examined the causality of the observed correlations using P-element excision-derived knockout alleles of the Men gene and found significant changes in the maximum activities of both IDH and G6PD, but not in triglyceride concentration, suggesting compensatory interactions between MEN, IDH, and G6PD. Additionally, we found significantly higher than expected levels of MEN activity in knockout heterozygotes, which we attribute to transvection effects. The distinct differences in biochemistry and physiology between the naturally occurring alleles and between the engineered alleles suggest the potential for selection on the Men locus. SIGNIFICANT progress has been made in characterizing population variability at the level of DNA sequences, but the central challenge of elucidating rules that connect genotype and phenotype remains. In many cases, genotype may give rise to phenotype through interactions among multiple genes and metabolite intermediates. Presumably, these interactions are at least partly the product of natural selection. The challenge, however, is not to simply infer the presence of selection, but to elucidate its action and distribution across such multiple gene networks. In this study we begin an analysis of the variation and functional interactions among three oxidative enzymes known to be the primary source of the reduced form of the metabolic cofactor NADP.A single amino acid polymorphism was identified in cytosolic malic enzyme (Men) as part of a study of geographic variation of single-nucleotide polymorphisms associated with the genes of central metabolic enzymes in Drosophila melanogaster (Sezgin et al. 2004). The polymorphism is an alanine-to-glycine substitution at amino acid 113 and the two alleles defined by the amino acid substitution occur in approximately equal frequency in all 10 North American populations examined. Allele frequency clines were detected at a number of other metabolic genes, but these Men alleles and associated haplotypes showed no clinal changes with latitude. While the presence of clinal change in allele frequency can be interpreted as evidence for selection on a locus, the lack of such a pattern does not indicate that a polymorphism is necessarily neutral. Here we examine other as...
Urbanization transforms environments in ways that alter biological evolution. We examined whether urban environmental change drives parallel evolution by sampling 110,019 white clover plants from 6169 populations in 160 cities globally. Plants were assayed for a Mendelian antiherbivore defense that also affects tolerance to abiotic stressors. Urban-rural gradients were associated with the evolution of clines in defense in 47% of cities throughout the world. Variation in the strength of clines was explained by environmental changes in drought stress and vegetation cover that varied among cities. Sequencing 2074 genomes from 26 cities revealed that the evolution of urban-rural clines was best explained by adaptive evolution, but the degree of parallel adaptation varied among cities. Our results demonstrate that urbanization leads to adaptation at a global scale.
Interactions across biological networks are often quantified under a single set of conditions; however, cellular behaviors are dynamic and interactions can be expected to change in response to molecular context and environment. To determine the consistency of network interactions, we examined the enzyme network responsible for the reduction of nicotinamide adenine dinucleotide phosphate (NADP) to NADPH across three different conditions: oxidative stress, starvation, and desiccation. Synthetic, activity-variant alleles were used in Drosophila melanogaster for glucose-6-phosphate dehydrogenase (G6pd), cytosolic isocitrate dehydrogenase (Idh), and cytosolic malic enzyme (Men) along with seven different genetic backgrounds to lend biological relevance to the data. The responses of the NADP-reducing enzymes and two downstream phenotypes (lipid and glycogen concentration) were compared between the control and stress conditions. In general, responses in NADP-reducing enzymes were greater under conditions of oxidative stress, likely due to an increased demand for NADPH. Interactions between the enzymes were altered by environmental stress in directions and magnitudes that are consistent with differential contributions of the different enzymes to the NADPH pool: the contributions of G6PD and IDH seem to be accentuated by oxidative stress, and MEN by starvation. Overall, we find that biological network interactions are strongly influenced by environmental conditions, underscoring the importance of examining networks as dynamic entities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.