Memories are thought to be attractor states of neuronal representations, with the hippocampus a likely substrate for context-dependent episodic memories. However, such states have not been directly observed. For example, the hippocampal place cell representation of location was previously found to respond continuously to changes in environmental shape alone. We report that exposure to novel square and circular environments made of different materials creates attractor representations for both shapes: Place cells abruptly and simultaneously switch between representations as environmental shape changes incrementally. This enables study of attractor dynamics in a cognitive representation and may correspond to the formation of distinct contexts in context-dependent memory.
Orienting in large-scale space depends on the interaction of environmental experience and pre-configured, possibly innate, constructs. Place, head-direction and grid cells in the hippocampal formation provide allocentric representations of space. Here we show how these cognitive representations emerge and develop as rat pups first begin to explore their environment. Directional, locational and rhythmic organization of firing are present during initial exploration, including adult-like directional firing. The stability and precision of place cell firing continues to develop throughout juvenility. Stable grid cell firing appears later but matures rapidly to adult levels. Our results demonstrate the presence of three neuronal representations of space prior to extensive experience, and show how they develop with age.
The hippocampus is widely believed to be involved in the storage or consolidation of long-term memories. Several reports have shown short-term changes in single hippocampal unit activity during memory and plasticity experiments, but there has been no experimental demonstration of long-term persistent changes in neuronal activity in any region except primary cortical areas. Here we report that, in rats repeatedly exposed to two differently shaped environments, the hippocampal-place-cell representations of those environments gradually and incrementally diverge; this divergence is specific to environmental shape, occurs independently of explicit reward, persists for periods of at least one month, and transfers to new enclosures of the same shape. These results indicate that place cells may be a neural substrate for long-term incidental learning, and demonstrate the long-term stability of an experience-dependent firing pattern in the hippocampal formation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.