DNA methylation is pivotal in orchestrating gene expression patterns in various mammalian biological processes. Perturbation of the bovine alveolar macrophage (bAM) transcriptome, due to Mycobacterium bovis (M. bovis) infection, has been well documented; however, the impact of this intracellular pathogen on the bAM epigenome has not been determined. Here, whole genome bisulfite sequencing (WGBS) was used to assess the effect of M. bovis infection on the bAM DNA methylome. The methylomes of bAM infected with M. bovis were compared to those of non-infected bAM 24 hours post-infection (hpi). No differences in DNA methylation (CpG or non-CpG) were observed. Analysis of DNA methylation at proximal promoter regions uncovered >250 genes harbouring intermediately methylated (IM) promoters (average methylation of 33–66%). Gene ontology analysis, focusing on genes with low, intermediate or highly methylated promoters, revealed that genes with IM promoters were enriched for immune-related GO categories; this enrichment was not observed for genes in the high or low methylation groups. Targeted analysis of genes in the IM category confirmed the WGBS observation. This study is the first in cattle examining genome-wide DNA methylation at single nucleotide resolution in an important bovine cellular host-pathogen interaction model, providing evidence for IM promoter methylation in bAM.
Selection for system-wide morphological, physiological, and metabolic adaptations has led to extreme athletic phenotypes among geographically diverse horse breeds. Here, we identify genes contributing to exercise adaptation in racehorses by applying genomics approaches for racing performance, an end-point athletic phenotype. Using an integrative genomics strategy to first combine population genomics results with skeletal muscle exercise and training transcriptomic data, followed by whole-genome resequencing of Asian horses, we identify protein-coding variants in genes of interest in galloping racehorse breeds (Arabian, Mongolian and Thoroughbred). A core set of genes, G6PC2, HDAC9, KTN1, MYLK2, NTM, SLC16A1 and SYNDIG1, with central roles in muscle, metabolism, and neurobiology, are key drivers of the racing phenotype. Although racing potential is a multifactorial trait, the genomic architecture shaping the common athletic phenotype in horse populations bred for racing provides evidence for the influence of protein-coding variants in fundamental exercise-relevant genes. Variation in these genes may therefore be exploited for genetic improvement of horse populations towards specific types of racing.
BackgroundBovine tuberculosis is caused by infection withMycobacterium bovis, which can also cause disease in a range of other mammals, including humans. Alveolar macrophages are the key immune effector cells that first encounterM. bovisand how the macrophage epigenome responds to mycobacterial pathogens is currently not well understood.ResultsHere, we have used chromatin immunoprecipitation sequencing (ChIP-seq), RNA-seq and miRNA-seq to examine the effect ofM. bovisinfection on the bovine alveolar macrophage (bAM) epigenome. We show that H3K4me3 is more prevalent, at a genome-wide level, in chromatin fromM. bovis-infected bAM compared to control non-infected bAM; this was particularly evident at the transcriptional start sites of genes that determine programmed macrophage responses to mycobacterial infection (e.g. M1/M2 macrophage polarisation). This pattern was also supported by the distribution of RNA Polymerase II (PolII) ChIP-seq results, which highlighted significantly increased transcriptional activity at genes demarcated by permissive chromatin. Identification of these genes enabled integration of high-density GWAS data, which revealed genomic regions associated with resilience to infection withM. bovisin cattle.ConclusionsThrough integration of these data, we show that bAM transcriptional reprogramming occurs through differential distribution of H3K4me3 and PolII at key immune genes. Furthermore, this subset of genes can be used to prioritise genomic variants from a relevant GWAS data set.
Mycobacterium tuberculosis, the causative agent of human tuberculosis (hTB), is currently classed as the thirteenth leading cause of death worldwide. Mycobacterium bovis, a close evolutionary relative of M. tuberculosis, causes bovine tuberculosis (bTB) and is one of the most damaging infectious diseases to livestock agriculture. Previous studies have shown that the pathogenesis of bTB disease is comparable to hTB disease, and that the bovine and human alveolar macrophage (bAM and hAM, respectively) transcriptomes are extensively reprogrammed in response to infection with these intracellular mycobacterial pathogens. However, although M. bovis and M. tuberculosis share over 99% identity at the genome level, the innate immune responses to these pathogens have been shown to be different in human or cattle hosts. In this study, a multi-omics integrative approach was applied to encompass functional genomics and GWAS data sets across the two primary hosts (Bos taurus and Homo sapiens) and both pathogens (M. bovis and M. tuberculosis). Four different experimental infection groups were used, each with parallel non-infected control cells: 1) bAM infected with M. bovis, 2) bAM infected with M. tuberculosis, 3) hAM infected with M. tuberculosis, and 4) human monocyte-derived macrophages (hMDM) infected with M. tuberculosis. RNA-seq data from these experiments 24 hours post-infection (24 hpi) was analysed using three separate computational pipelines: 1) differentially expressed genes, 2) differential gene expression interaction networks, and 3) combined pathway analysis. The results of these analyses were then integrated with high-resolution bovine and human GWAS data sets to detect novel quantitative trait loci (QTLs) for resistance to mycobacterial infection and resilience to disease. Results from this study revealed common and unique response macrophage pathways for both pathogens and identified 32 genes (12 bovine and 20 human) significantly enriched for SNPs associated with disease resistance, the majority of which encode key components of the NF-κB signalling pathway and that also drive formation of the granuloma.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.