A bridge die was designed for the simultaneous extrusion of two rectangular profiles and used in a strictly monitored aluminum extrusion process. Experimental investigations aimed at the measurement of the mandrel deflection, the local die temperature, and the pressure inside the welding chamber by means of special measurement equipment. AA6082 alloy was used as extrusion material. The influence of the extrusion speed on the aforementioned objectives is reported. The experiments were repeated at least three times under the same conditions in order to achieve a statistical validation of the acquired data. These data are provided as reference for the 2013 edition of the Extrusion Benchmark.
The design of porthole dies for aluminum extrusion processes is very complex. For the accurate design, fundamental knowledge about material flow is of major importance. To gain these information, numerical methods are increasingly utilized. The accuracy of the simulation results depends mainly on the precision of the used boundary conditions in the model. Therefore, visioplastic analyses of the material flow inside a porthole die are presented in this paper. A special modular tool concept was developed to prepare and visualize the material flow inside the process. The results of the experimental analysis were used for the verification of numerical results which were calculated with the commercial software codes Deform3D and HyperXtrude.
The decrease of the bearing length in extrusion processes results in increasing of the
material flow and offers, through this, the possibility for manipulation and optimization. This paper
presents a simulation based optimization technique which uses this effect for optimizing the
material flow in direct extrusion processes. Firstly, the method is used in a multi-extrusion process
with equal pitch circle profiles, then in an extrusion process of an asymmetric profile. Furthermore,
a composite extrusion process is analyzed where endless wires of high strength steel are embedded
in a base material of aluminum. The insertion of reinforcement elements into the base material flow,
especially within the small ratio between profile thickness and the reinforcement diameter, can lead
to significant local disturbances inside the die, which result in undesirable profile defects. Hence,
the simulation-based optimization method is especially used to optimize inhomogeneous wall
thicknesses in composite profiles.
The accurate simulation and the optimization of extrusion processes can be a helpful technique to ensure producibility of complex aluminum profiles, for example for the automobile industry. Currently, the die designing is based on expert’s knowledge and cost-intensive prototyping. The paper deals with numerical investigations based on finite element simulations as well as experimental investigations of an industrial extrusion process. A newly developed method for longitudinal seam weld prediction is applied to analyze the position of the longitudinal welding line and the welding quality.
Abstract. For an increase in safety against crack initiation and growth in metallic structures of airplanes different concepts were developed in the past. In the focus of this work are profiles made of continuously reinforced extruded aluminum. The production and the used die set of these profiles is presented as well as problems occurring in terms of geometrical inaccuracies of the embedded high strength wires. In addition, this paper attends to the problem of lateral seam weld formation. The interface between the AA-2099 as well as AA-6056 aluminum alloy and the high strength wires Nivaflex and Nanoflex were characterized by metallurgic investigations and push-out tests. As a result it can be stated that a sufficient geometrical accuracy could be achieved and a high interface strength can be accomplished even if a slight gap is still present in the interface layer between matrix and reinforcing element.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.