Supplementary cementitious materials (SCM) can reduce the total amount of Portland cement clinker in concrete production. Rice husk ashes (RHA) can be converted from an agricultural by-product to a high-performance concrete constituent due to a high amount of reactive silica with pozzolanic properties if they are burnt under controlled conditions. The way and duration of combustion, the cooling process as well as the temperature have an effect on the silica form and thus, the chemical and physical performance of the RHA. Various studies on the best combustion technique have been published to investigate the ideal combustion techniques. Yet, the process mostly took place under laboratory conditions. Investigating the difference between the performance of RHA produced in a rural environment and laboratory conditions is useful for the assessment and future enhancement of RHA production, and its application both as building material, for example in rural areas where it is sourced in large quantities, and as additive for high performance concrete. Thus, the paper presents a comparison between RHA produced under rudimentary conditions in a self-made furnace in the rural Bagamoyo, Tanzania and under controlled laboratory conditions at the Technical University of Munich, Germany, with different combustion methods and temperatures. In a second step, RHA was ground to reach particle size distributions comparable to cement. In a third step, cement pastes were prepared with 10%, 20% and 40% of cement replacement, and compared to the performance of plain and fly ash blended cement pastes. The results show that controlled burning conditions around 650 °C lead to high reactivity of silica and, therefore, to good performance as SCM. However, also the RHA burnt under less controlled conditions in the field provided reasonably good properties, if the process took place with proper burning parameters and adequate grinding. The knowledge can be implemented in the field to improve the final RHA performance as SCM in concrete.
Two static yield stress models, one known as YODEL and the newly proposed BreakPro, based on inter-particle bond breaking probability, were employed to comparatively simulate the yield stress of cement suspensions, induced by oscillatory rheological tests with small amplitude oscillatory shear (SAOS). This yield stress occurs at a critical strain in the order of 0.01%, and is commonly attributed to the limit of the linear viscoelastic domain, where attractive forces bridge the cement particles and form a flocculated particle network. YODEL is based on van der Waals (vdW) interaction forces to describe the yield stress for flow onset at a critical strain of a few percent, developed for simple non-reactive particulate suspensions. However, due to the high pH and reactivity of cementitious suspensions, their particle interaction forces are much higher than vdW. Therefore, until now, the YODEL adaptations to cementitious suspensions did not explicitly consider the microstructural-based salient feature of the original model, but used it as an implicit fitting parameter to scale the average attractive force. In this paper, the force is inversely estimated using the full power of the two microstructural-based models, presenting a new mathematical tool for investigating the fragility of the rigid percolated structure of cement suspensions. The model parameters were calibrated on measured yield stresses obtained by SAOS measurements in a high-sensitivity rheometer. The estimated forces were found to be 5.57 (BreakPro) and 1.43 (YODEL) times higher than typical van der Waals forces. The YODEL percolation threshold of 21% turned out to be significantly lower than the one found by the BreakPro model (37%). This indicated that BreakPro modeling assumptions are better suited for the description of yield stress at SAOS critical strain than the YODEL model.
For the selective paste intrusion (SPI) method, thin layers of aggregate are locally bound by cement paste where the structure shall arise. After completion of the printing process, the structure is excavated from the particle-bed and the unbound particles are removed. However, for a sufficient layer bonding and shape accuracy, the rheology of the cement paste must be adapted to the flow resistance of the particle-bed. For practical application, that means mostly time and material consuming “trial and error” tests. To prevent that, analytical models can help to predict the penetration of the cement paste. This paper presents four analytical models to calculate the penetration depth of a cement paste into a particle packing. Based on Darcy’s law, an already existing model is slightly modified (model A+) and a generalized (model C), an advanced generalized (model D) as well as a simplified model (model B/B+) are developed. Compared to conducted tests on the penetration depth, model B showed good accuracy (deviation <1.5 mm) for pastes with a yield stress ≥8.2 Pa, model A+/B+/C for ≥ 5.4 Pa and model D even for <5.4 Pa. Finally, an application guide for each model for practical use will be given.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.