Current computer-assisted orthopedic surgery (CAOS) systems typically use preoperative computed tomography (CT) and intraoperative fluoroscopy as their imaging modalities. Because these imaging tools use X-rays, both patients and surgeons are exposed to ionizing radiation that may cause long-term health damage. To register the patient with the preoperative surgical plan, these techniques require tracking of the targeted anatomy by invasively mounting a tracking device on the patient, which results in extra pain and may prolong recovery time. The mounting procedure also leads to a major difficulty of using these approaches to track small bones or mobile fractures. Furthermore, it is practically impossible to mount a heavy tracking device on a small bone, which thus restricts the use of CAOS techniques. This article presents a novel CAOS method that employs 2D ultrasound (US) as the imaging modality. Medical US is non-ionizing and real-time, and our proposed method does not require any invasive mounting procedures. Experiments have shown that the proposed registration technique has sub-millimetric accuracy in localizing the best match between the intraoperative and preoperative images, demonstrating great potential for orthopedic applications. This method has some significant advantages over previously reported US-guided CAOS techniques: it requires no segmentation and employs only a few US images to accurately and robustly localize the patient. Preliminary laboratory results on both a radius-bone phantom and human subjects are presented.
Purpose: Ultrasound section-thickness is the out-of-plane beamwidth causing major roles in creating image artifacts normally appearing around the anechoic areas. These artifacts can introduce errors in localizing the needle tips during any ultrasound-guided procedure. To study how section-thickness and imaging parameters can affect observing and localizing needle tips, we have conducted a typical calibration setup experiment. Method: Multiple needles were inserted orthogonal to the axial image plane, at various distances from the transducer. The experiment was conducted on a brachytherapy stepper for a curvilinear transrectal-ultrasound probe. Result: Experiments demonstrated that the imaging parameters have direct impacts on observing needle tips at different axial locations. They suggest specific settings to minimize the imaging artifacts. Conclusion: The ultrasound section-thickness and side lobes could result in misjudgment of needle insertion depth in an ultrasound-guided procedure. A beam profile could assist in considering the likelihood of position errors, when the effects of side lobes are minimized.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.