Expression of pathogenesis-related protein 1a (PR-1a), a protein of unknown biochemical function, is induced to high levels in tobacco in response to pathogen infection. The induction of PR-1a expression is tightly correlated with the onset of systemic acquired resistance (SAR), a defense response effective against a variety of fungal, viral, and bacterial pathogens. While PR-1a has been postulated to be involved in SAR, and is the most highly expressed of the PR proteins, evidence for its role is lacking. In this report, we demonstrate that constitutive high-level expression of PR-1a in transgenic tobacco results in tolerance to infection by two oomycete pathogens, Peronospora tabacina and Phytophthora parasitica var. nicotianae.
The tyrosine-67 to phenylalanine mutated rat cytochrome c is similar to the unmutated protein in its spectral, reduction potential, and enzymic electron-transfer properties. However, the loss of the 695-nm band, characteristic of the ferric form of the normal low-spin physiologically active configuration, occurs 1.2 pH units higher on the alkaline side and 0.7 pH unit lower on the acid side. Similarly, the heme ironmethionine-80 sulfur bond is more stable to temperature, with the midpoint ofthe transition being 300C higher, corresponding to an increase in AH of 5 kcal/mol (1 cal = 4.184 J), partially mitigated by an increase of 11 entropy units in AS. Urea has only slightly different effects on the two proteins. These phenomena are best explained by considering that the loss of one of the three hydrogen-bonding side chains, tyrosine-67, asparagine-52, and threonine-78, which hold an internal water molecule on the "left, lower front" side of the protein [Takano, Biol. 153,, is sufficient to prevent its inclusion in the mutant protein, leading to a more stable structure, and, as indicated by preliminary proton NMR two-dimensional phase-sensitive nuclear Overhauser effect spectroscopy analyses, a reorganization of this area. This hypothesis predicts that elimination ofthe hydrogenbonding ability of residue 52 or 78 would also result in cytochromes c having similar properties. It is not obvious why the space-filling structure involving the internalized water molecule that leads to a destabilization energy of about 3 kcal/mol should be subject to extreme evolutionary conservation, when a more stable and apparently fully functional structure is readily available.
The methionine 80 sulfur-heme iron bond of rat cytochrome c, whose stability is decreased by mutating the phylogenetically invariant residue proline 30 to alanine and increased when tyrosine 67 is changed to phenylalanine, recovers its wild-type characteristics when both substitutions are performed on the same molecule. Titrations with urea, analyzed according to the heteropolymer theory [Alonso, D. O. V., & Dill, K. A. (1991) Biochemistry 30, 5974-5985], indicate that both single mutations increase the solvent exposure of hydrophobic groups in the unfolded state, while in the double mutant this conformational perturbation disappears. Similar increases in solvent exposure of hydrophobic groups are observed when the sulfur-iron bond of the wild-type protein is broken by alkylation of the methionine sulfur, by high pH, or by binding the heme iron with cyanide. The compensatory effects of the two single mutations do not extend to the overall stability of the protein. The added loss of conformational stability due to the single mutations amounts to 7.3 kcal/mol out of the 9 kcal/mol representing the overall free energy of stabilization of the native conformation of the wild-type protein. The folded conformation of the doubly mutated protein is only 2 kcal/mol less stable than that of the wild type. These results indicate that the double mutant protein is able to retain the essential folding pattern of cytochrome c and the thermodynamic stability of the methionine sulfur-heme iron bond, in spite of structural differences that weaken the overall stability of the molecule.
Drosophila melanogaster and rat cytochromes c in which proline-30 was converted to alanine or valine were expressed in a strain of baker's yeast, Saccharomyces cerevisiae, where they sustained aerobic growth. The mutations had no significant effect on the spectra or redox potentials but altered drastically the stability of the bond between the methionine-80 sulfur and the heme iron, as judged by four criteria: (i) the alkaline pKa values of the 695-nm band of the ferric form of the mutant proteins decreased by almost 1 pH unit as compared to the wild types; (ii) the acid pKa values increased by 0.5 to 1.2 pH units; (iii) the 695-nm band half-disappeared at temperatures 10-20TC lower in the mutant proteins than in the wild types; and (iv) the 695-nm band of the mutant proteins was susceptible to concentrations of urea that had little influence on their overall structure. The valinesubstituted rat cytochrome c had properties intermediate between those of the wild type and the alanine mutant. The destabilized coordinative bond is located in space a long distance from the mutation site. It is suggested that the mutations weaken the hydrogen bond between the carbonyl of residue 30 and the imino group of the imidazole of histidine-18, modifying the bonding of the heme iron by that imidazole, which, in turn, through a trans effect, weakens the bond between the heme iron and the other axial ligand, the sulfur of methionine-80. Alternatively, the effect of the mutations may be propagated allosterically along the peptide chain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.