A longstanding question for scientists has been whether or not any observable trends or shifts in global lightning activity have occurred since the Industrial Revolution. This study utilized over 8,000 certified ground‐based stations over a 43‐year period, as well as 16 years of Tropical Rainfall Measuring Mission (TRMM) Lightning Imaging Sensor (LIS) data, to provide a better understanding of the processes behind these trends. Ground station results show that many global regions have observed significant increases or decreases in thunder day occurrence. The Amazon, Maritime Continent, India, Congo, Central America, and Argentina display increases in annual thunder days since the 1970s, whereas China, Australia, and the Sahel among others observe decreases in the number of thunder days. The corresponding change in lightning flash density from the TRMM‐LIS, as well as the number of thunderstorm features and lightning flashes per thunderstorm feature, is compared to the thunder day trends during the TRMM lifespan. Results show a positive correlation between the changes of thunder day occurrence and flash density over most regions of the TRMM domain, including the Maritime Continent, China, South Africa, and Argentina. However, there are several regions with disagreements between the flash density and thunder day trends, such as India and Western Africa. The disagreements are related to the changes in the number of flashes per thunderstorm, which suggest other reasons to interpret the long term trends in thunder day occurrence over various regions. Understanding these regional trends in lightning activity is important in understanding the changes of precipitation systems under a varying climate.
In the early 1900s, J. W. Whipple began to validate C. T. R. Wilson's global electric circuit (GEC) hypothesis by correlating the diurnal variation of global thunder days with the diurnal variation of the fair weather electric field measured by the Carnegie Cruise. This study applies 16+ years of precipitation feature (PF) data from the Tropical Rainfall Measuring Mission, including lightning data from the Lightning Imaging Sensor, alongside 12 years of electric field measurements from Vostok, Antarctica, to further examine this relationship. Joint diurnal‐seasonal variations of the electric field are introduced and compared with a variety of PF parameters that are potentially related to the GEC. All tested PF parameters showed significant correlations to the electric field on the joint seasonal‐diurnal timescale, with the flash rate and volume of 30 dBZ between the −5°C and −35°C isotherms showing the best linear correlations with R2 values of 0.67 and 0.62, respectively. Furthermore, these relationships are analyzed during the two different phases of the El Niño–Southern Oscillation. Results show different seasonal‐diurnal variations of the electric field during El Niño and La Niña periods, with enhancements in the electric field between the months of January through April at 16–24 UTC in La Niña years. A similar trend is shown in global PF parameters, indicating relationships between the variations seen in the fair weather electric field and the variations of global PFs at diurnal, seasonal, and interannual timescales. This provides further evidence that PFs around the globe have a direct connection to the GEC.
It has long been understood that fog plays an important role in the atmospheric radiation budget and contributes to many transportation related fatalities and injuries. This study utilizes >8,000 Global Surface Summary of the Day (GSOD) ground stations to investigate trends observed in fog‐days over the past 44‐years, and to examine the validity of these trends under varying observational techniques. Results show strong large‐scale regional trends in the GSOD fog‐day data, with the United States (USA) and much of Europe observing ∼20–25% and ∼3–5% decreases respectively in fog‐day occurrence. However, when comparing fog‐day counts to simultaneous visibility, it is evident that several different fog‐day data collection techniques were used throughout the timeseries in many regions. For example, many stations in the USA made data collection changes in the mid 1990s, and again in the mid 2000s. To identify the artifacts from different data collection techniques, a simple method is developed to determine which stations indeed encountered at least one false deviation to the timeseries. After applying the methodology to all GSOD stations, 1,696 stations are identified as being potentially quality long‐term fog‐day stations. Utilizing these stations, more reliable regional trends can be derived over some specific regions. Spain, Australia, and China show statistically significant decreases in fog‐day occurrence. India and Japan show increases in fog day occurrence. Further analysis shows that the driving factors of fog such as temperature and moisture have changed regionally during the last four decades and could be linked to the long‐term regional fog‐day trends.
A 16-yr (1998–2013) Tropical Rainfall Measuring Mission (TRMM) Precipitation Feature (PF) database is used to examine the impacts of El Niño–Southern Oscillation (ENSO) on the characteristics of precipitation systems in the tropics and subtropics. Noticeable differences in the fractions of deep systems (20-dBZ radar echo tops greater than 10 km) and mesoscale convective systems (MCSs) (an area greater than 2000 km2) between different phases of ENSO are found over specific regions, including the central Pacific (CPACI), the western Maritime Continent (WMC), the eastern Maritime Continent (EMC), Gulf of Mexico (GM), Argentina (ARGEN), and Australia (AUS). The coefficients of determination R2 between the multivariate ENSO index (MEI) and the population fractions of deep convection and MCSs are analyzed seasonally over these regions. The responses from these precipitation systems to ENSO are found to be more pronounced in the winter half-year than in the summer half-year. An increase of rainfall during El Niño periods over the CPACI, GM, and ARGEN is found to be associated with more precipitation events and a higher fraction of intense, deep, and large precipitation systems. AUS has fewer precipitation events and a higher fraction of shallow and small precipitation systems during El Niño conditions. Both EMC and WMC have a higher fraction of MCSs during La Niña than El Niño conditions. The EMC observes a higher fraction of deep convection during La Niña conditions. However, the WMC has a higher fraction of deep convection during El Niño conditions, possibly related to the effect of the Indian Ocean dipole.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.