Recurrences of diffuse large B-cell lymphomas (DLBCL) result in significant morbidity and mortality, but their underlying genetic and biological mechanisms are unclear. Clonal relationship in DLBCL relapses so far is mostly addressed by the investigation of immunoglobulin (IG) rearrangements, therefore, lacking deeper insights into genome-wide lymphoma evolution. We studied mutations and copy number aberrations in 20 paired relapsing and 20 non-relapsing DLBCL cases aiming to test the clonal relationship between primaries and relapses to track tumors' genetic evolution and to investigate the genetic background of DLBCL recurrence. Three clonally unrelated DLBCL relapses were identified (15%). Also, two distinct patterns of genetic evolution in clonally related relapses were detected as follows: (1) early-divergent/branching evolution from a common progenitor in 6 patients (30%), and (2) late-divergent/linear progression of relapses in 11 patients (65%). Analysis of recurrent genetic events identified potential early drivers of lymphomagenesis (KMT2D, MYD88, CD79B and PIM1). The most frequent relapse-specific events were additional mutations in KMT2D and alterations of MEF2B. SOCS1 mutations were exclusive to non-relapsing DLBCL, whereas primaries of relapsing DLBCL more commonly displayed gains of 10p15.3-p12.1 containing the potential oncogenes PRKCQ, GATA3, MLLT10 and ABI1. Altogether, our study expands the knowledge on clonal relationship, genetic evolution and mutational basis of DLBCL relapses.
The therapeutic activity of the epidermal growth factor receptor (EGFR)-directed monoclonal antibody cetuximab in gastric cancer is currently being investigated in clinical studies. Reliable biomarkers for the identification of patients who are likely to benefit from this treatment are not available. In this study, we assessed the activity of cetuximab in five gastric cancer cell lines (AGS, AZ521, Hs746T, LMSU and MKN1). The viability of two of these cell lines, AZ521 and MKN1, was significantly reduced by cetuximab treatment. High expression and secretion levels of the EGFR-binding ligand, amphiregulin (AREG), were associated with cetuximab responsiveness. MET activation and mutations in Kirsten-Ras gene (KRAS) were associated with cetuximab resistance. By introducing a hierarchy between these markers, we established a model that facilitated the correct classification of all five gastric cancer cell lines as cetuximab responsive or non-responsive. The highest priority was allocated to activating KRAS mutations, followed by MET activation and finally by the levels of secreted AREG. In order to validate these results, we used three additional human gastric cancer cell lines (KATOIII, MKN28 and MKN45). In conclusion, we propose that our model allows the response of gastric cancer cell lines to cetuximab treatment to be predicted.
This study analyzes the proteomes and phospho-proteomes of isogenic DLD-1 cancer cells differing in karyotypes and chromosome stability. Chromosome doubling is shown to trigger more extensive changes in (phospho-)proteomes than chromosome instability, and activation of mitotic pathways may explain differential responses to mitotic inhibitors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.