We systematically study the performance of compact lumped element planar microwave $\mathrm{Nb_{70}Ti_{30}N}$ (NbTiN) resonators operating at 5 GHz in external in-plane magnetic fields up to 440 mT, a broad temperature regime from 2.2 K up to 13 K, as well as mK temperatures. For comparison, the resonators have been fabricated on thermally oxidized and pristine, (001) oriented silicon substrates. When operating the resonators in the multi-photon regime at $T=2.2$ K, we find internal quality factors $Q_{\mathrm{int}}\simeq$ $2\cdot10^5$ for NbTiN resonators grown on pristine Si substrates. In addition, we investigate the $Q$-factors of the resonators on pristine Si substrates at millikelvin temperatures to asses their applicability for quantum applications. We find $Q_{\mathrm{int}}\simeq$ $2\cdot10^5$ in the single photon regime and $Q_{\mathrm{int}}\simeq$ $5\cdot10^5$ in the high power regime at $T=7$ mK. From the excellent performance of our resonators over a broad temperature and magnetic field range, we conclude that NbTiN deposited on Si (100) substrates, where the suface oxide has been removed, constitutes a promising material platform for electron spin resonance and ferromagnetic resonance experiments using superconducting planar microwave resonators.
Nano-electromechanical systems implement the opto-mechanical interaction combining electromagnetic circuits and mechanical elements. We investigate an inductively coupled nano-electromechanical system, where a superconducting quantum interference device (SQUID) realizes the coupling. We show that the resonance frequency of the mechanically compliant string embedded into the SQUID loop can be controlled in two different ways: (1) the bias magnetic flux applied perpendicular to the SQUID loop, (2) the magnitude of the in-plane bias magnetic field contributing to the nano-electromechanical coupling. These findings are quantitatively explained by the inductive interaction contributing to the effective spring constant of the mechanical resonator. In addition, we observe a residual field dependent shift of the mechanical resonance frequency, which we attribute to the finite flux pinning of vortices trapped in the magnetic field biased nanostring.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.