A review of the current state of knowledge on the effects of radiation on concrete in nuclear power production applications is presented. Emphasis is placed on the effects of radiation damage, as reflected by changes in engineering properties of concrete, in the evaluation of the long-term operation and for plant life or aging management of nuclear power plants (NPPs) in Japan, Spain, and the United States. National issues and concerns are described for Japan and the United States followed by a discussion of the fundamental understanding of the effects of radiation on concrete. Specifically, the effects of temperature, moisture content, and irradiation on ordinary Portland cement paste and the role of temperature and neutron energy spectra on radiation-induced volumetric expansion (RIVE) of aggregate-forming minerals are described. This is followed by a discussion of the bounding conditions for extended operation; the significance of accelerated irradiation conditions; the role of temperature and creep; and how these issues are being incorporated into numerical and meso-scale models. From these insights on radiation damage, analyses of these effects on concrete structures are reviewed, and the current status of work in Japan and the United States is described. Also discussed is the recent formation of a new international scientific and technical organization, the International Committee on Irradiated Concrete, to provide a forum for timely information exchanges among organizations pursuing the identification, quantification, and modeling of the effects of radiation on concrete in commercial nuclear applications. The paper concludes with a discussion of research gaps, including (1) interpreting test-reactor data, (2) evaluating service-irradiated concrete for aging management and to inform radiation damage models with the Zorita NPP (Spain) serving as the first comprehensive test case, (3) irradiated-assisted alkali-silica reactions, and (4) RIVE under constrained conditions.
Quartz single-crystal samples consisting of α-quartz crystal structure were neutron irradiated to fluences of 5 × 10, 4 × 10, and 2 × 10 n/cm (E > 0.1 MeV) at two temperatures (52 and 95 °C). The changes in the α-quartz phase as a function of these two conditions (temperature and fluence) were studied using X-ray powder diffraction (XRD), Raman spectroscopy, and transmission electron microscopy (TEM), and the results acquired using these complementary techniques are presented in a single place for the first time. XRD studies showed that the lattice parameters of α-quartz increased with increasing neutron flux. The lattice growth was larger for the samples that were neutron irradiated at 52 °C than at 95 °C. Moreover, an amorphous content was determined in the quartz samples neutron irradiated at 4 × 10 n/cm, with the greater amount being in the 52 °C irradiated sample. Complete amorphization of quartz was observed at a fluence of 2 × 10 n/cm (E > 0.1 MeV) using XRD and confirmed by TEM characterization and Raman spectroscopic studies. The cause for α-quartz lattice expansion and sample amorphization was also explored using XRD and Raman spectroscopic studies.
Abstract. Life extensions of nuclear power plants (NPPs) to 60 years of operation and the possibility of subsequent license renewal to 80 years have renewed interest in long-term material degradation in NPPs. Large irreplaceable sections of most nuclear generating stations are constructed from concrete, including safety-related structures such as biological shields and containment buildings; therefore, concrete degradation is being considered with particular focus on radiation-induced effects. Based on the projected neutron fluence values (E > 0.1 MeV) in the concrete biological shields of the US pressurized water reactor fleet and the currently available data on radiation effects on concrete, some decrease in mechanical properties of concrete cannot be ruled out during extended operation beyond 60 years. An expansion of the irradiated concrete database is desirable to ensure reliable risk assessment for extended operation of nuclear power plants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.