We present the polymer poly-N-hydroxyethylacrylamide (PHEA) (polyDuramide) as a novel, hydrophilic, adsorbed capillary coating for electrophoretic protein analysis. Preparation of the PHEA coating requires a simple and fast (30 min) protocol that can be easily automated in capillary electrophoresis instruments. Over the pH range of 3-8.4, the PHEA coating is shown to reduce electroosmotic flow (EOF) by about 2 orders of magnitude compared to the bare silica capillary. In a systematic comparative study, the adsorbed PHEA coating exhibited minimal interactions with both acidic and basic proteins, providing efficient protein separations with excellent reproducibility on par with a covalent polyacrylamide coating. Hydrophobic interactions between proteins and a relatively hydrophobic poly-N,N-dimethylacrylamide (PDMA) adsorbed coating, on the other hand, adversely affected separation reproducibility and efficiency. Under both acidic and basic buffer conditions, the adsorbed PHEA coating produced an EOF suppression performance comparable to that of covalent polyacrylamide coating and superior to that of adsorbed PDMA coating. The protein separation performance in PHEA-coated capillaries was retained for 275 consecutive protein separation runs at pH 8.4, and for more than 800 runs at pH 4.4. The unique and novel combination of hydrophilicity and adsorptive coating ability of PHEA makes it a suitable wall coating for automated microscale analysis of proteins by capillary array systems.
A replaceable polymer matrix, based on the novel monomer N-hydroxyethylacrylamide (HEA), has been synthesized for application in DNA separation by microchannel electrophoresis. The monomer was found by micellar electrokinetic chromatography analysis of monomer partitioning between water and 1-octanol to be more hydrophilic than acrylamide and N,N-dimethylacrylamide. Polymers were synthesized by free radical polymerization in aqueous solution. The weight-average molar mass of purified polymer was characterized by tandem gel permeation chromatography-multiangle laser light scattering. The steady-shear rheological behavior of the novel DNA sequencing matrix was also characterized, and it was found that the viscosity of the novel matrix decreases by more than 2 orders of magnitude as the shear rate is increased from 0.1 to 1000 s(-1). Moreover, in the shear-thinning region, the rate of change of matrix viscosity with shear rate increases with increasing polymer concentration. Poly-N-hydroxyethylacrylamide (PHEA) exhibits good capillary-coating ability, via adsorption from aqueous solution, efficiently suppressing electroosmotic flow (EOF) in a manner comparable to that of poly-N,N-dimethylacrylamide. Under DNA sequencing conditions, adsorptive PHEA coatings proved to be stable and to maintain negligible EOF for over 600 h of electrophoresis. Resolution of DNA sequencing fragments, particularly fragments > 500 bases, in PHEA matrices generally improves with increasing polymer concentration and decreasing electric field strength. When PHEA is used both as a separation matrix and as a dynamic coating in bare silica capillaries, the matrix can resolve over 620 bases of contiguous DNA sequence within 3 h. These results demonstrate the good potential of PHEA matrices for high-throughput DNA analysis by microchannel electrophoresis.
Amino acids of differing hydrophobicity were tested as plasticizers in starch‐glycerol (4:1 weight ratio) blends and were compared to the more conventional plasticizers, urea, sucrose and ammonium chloride. In mechanical tests (tensile strength and percent elongation) on extruded ribbons containing up to 20 weight percent plasticizer, glycine and isoleucine hydrochloride were found to be extremely poor plasticizers. However, lysine behaved similarly to sucrose. Proline compared favorably to urea. Moreover, at concentrations of 23 and 29 weight percent, proline was superior to urea in its ability to increase the percent elongation of the starch‐glycerol mixture. The glass transition temperature (Tg) for the standard starch‐glycerol samples was 40°C, as determined by differential scanning calorimetry. Added lysine hydrochloride, sucrose, proline and urea effected the Tg similarly. At 5 weight percent all Tg's increased, while at 20 weight percent they dropped to room temperature or below. Isoleucine, at low or high concentration, yielded a Tg of 60°C, consistent with very brittle material. Biodegradation experiments were conducted on selected formulations by monitoring CO2 evolution after inoculation with Aspergillus niger. Little CO2 accumulated from the standard starch‐glycerol mixture or sucrose plasticized blends, likely due to a lack of combined nitrogen. In contrast, proline and urea‐plasticized blends were rapidly metabolized.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.