Acoustic-trawl surveys are an important tool for marine stock management and environmental monitoring of marine life. Correctly assigning the acoustic signal to species or species groups is a challenge, and recently trawl camera systems have been developed to support interpretation of acoustic data. Examining images from known positions in the trawl track provides high resolution ground truth for the presence of species. Here, we develop and deploy a deep learning neural network to automate the classification of species present in images from the Deep Vision trawl camera system. To remedy the scarcity of training data, we developed a novel training regime based on realistic simulation of Deep Vision images. We achieved a classification accuracy of 94% for blue whiting, Atlantic herring, and Atlantic mackerel, showing that automatic species classification is a viable and efficient approach, and further that using synthetic data can effectively mitigate the all too common lack of training data.
In this work, we developed a device capable to generate a non-thermal plasma discharge inside a sealed bag. The aim of this study was to assess the effectiveness of the oxygen, nitrogen and argon plasma sterilization on Pseudomonas aeruginosa, Staphylococcus aureus and Bacillus subtilis spores according to the NF EN 556 Norm. Moreover the bag integrity which is a critical key to maintain the sterile state of items after the end of the process was verified by Fourier Transform Infrared (FTIR) and X-ray Photoelectron Spectrometry (XPS) analyses. After plasma treatments, the bacterial counting showed a 6 log reduction of P. aeruginosa and S. aureus in 45 min and 120 min respectively whatever the gas used and a 4 log reduction of B. subtilis spores in 120 min with only oxygen plasma. These results were confirmed by Scanning Electron Microscopy (SEM) observations showing altered bacteria or spores and numerous debris. Taking into account the studied microorganisms, the oxygen plasma treatment showed the highest efficiency. FTIR and XPS analyses showed that this treatment induced no significant modification of the bags. To conclude this non-thermal plasma sterilization technique could be an opportunity to sterilize heat and chemical-sensitive medical devices and to preserve their sterile state after the end of the process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.