This technology could provide insight on motor fluctuations in the context of daily life to guide clinical management and aid in development of new therapies.
The objective was to develop and evaluate algorithms for quantifying gait and lower extremity bradykinesia in patients with Parkinson’s disease using kinematic data recorded on a heel-worn motion sensor unit. Subjects were evaluated by three movement disorder neurologists on four domains taken from the Movement Disorders Society Unified Parkinson’s Disease Rating Scale while wearing the motion sensor unit. Multiple linear regression models were developed based on the recorded kinematic data and clinician scores and produced outputs highly correlated to clinician scores with an average correlation coefficient of 0.86. The newly developed models have been integrated into a home-based system for monitoring Parkinson’s disease motor symptoms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.