An increasing number of benzodiazepine-type compounds are appearing on the new psychoactive substances market. 8-Chloro-6-(2-fluorophenyl)-1-methyl-4H-[1,2,4]triazolo[4,3-a][1,4]benzodiazepine (well known as flualprazolam) represents a potent ‘designer benzodiazepine’ that has been associated with sedation, loss of consciousness, memory loss and disinhibition. The aims of the present study were to tentatively identify flualprazolam metabolites using in vitro incubations with pooled human liver S9 fraction or HepaRG cells by means of liquid-chromatography-high resolution tandem mass spectrometry. Isozymes involved in phase I and II biotransformation were identified in vitro. Results were then confirmed using human biosamples of an 18-year old male who was admitted to the emergency department after suspected flualprazolam ingestion. Furthermore, the plasma concentration was determined using the standard addition method. Seven flualprazolam metabolites were tentatively identified. Several cytochrome P450 and UDP-glucuronosyltransferase isozymes, amongst them CYP3A4 and UGT1A4, were shown to be involved in flualprazolam biotransformation reactions, and an influence of polymorphisms as well as drug–drug or drug–food interactions cannot be excluded. Alpha-hydroxy flualprazolam glucuronide, 4-hydroxy flualprazolam glucuronide and the parent glucuronide were identified as most abundant signals in urine, far more abundant than the parent compound flualprazolam. These metabolites are thus recommended as urine-screening targets. If conjugate cleavage was performed during sample preparation, the corresponding phase I metabolites should be added as targets. Both hydroxy metabolites can also be recommended for blood screening. The flualprazolam plasma concentration determined in the intoxication case was as low as 8 μg/L underlining the need of analytical methods with sufficient sensitivity for blood-screening purposes.
Amatoxins are known to be one of the main causes of serious to fatal mushroom intoxication. Thorough treatment, analytical confirmation, or exclusion of amatoxin intake is crucial in the case of any suspected mushroom poisoning. Urine is often the preferred matrix due to its higher concentrations compared to other body fluids. If urine is not available, analysis of human blood plasma is a valuable alternative for assessing the severity of intoxications. The aim of this study was to develop and validate a liquid chromatography (LC)-high resolution tandem mass spectrometry (HRMS/MS) method for confirmation and quantitation of α- and β-amanitin in human plasma at subnanogram per milliliter levels. Plasma samples of humans after suspected intake of amatoxin-containing mushrooms should be analyzed and amounts of toxins compared with already published data as well as with matched urine samples. Sample preparation consisted of protein precipitation, aqueous liquid-liquid extraction, and solid-phase extraction. Full chromatographical separation of analytes was achieved using reversed-phase chromatography. Orbitrap-based MS allowed for sufficiently sensitive identification and quantification. Validation was successfully carried out, including analytical selectivity, carry-over, matrix effects, accuracy, precision, and dilution integrity. Limits of identification were 20 pg/mL and calibration ranged from 20 pg/mL to 2000 pg/mL. The method was applied to analyze nine human plasma samples that were submitted along with urine samples tested positive for amatoxins. α-Amanitin could be identified in each plasma sample at a range from 37–2890 pg/mL, and β-amanitin was found in seven plasma samples ranging from <20–7520 pg/mL. A LC-HRMS/MS method for the quantitation of amatoxins in human blood plasma at subnanogram per milliliter levels was developed, validated, and used for the analysis of plasma samples. The method provides a valuable alternative to urine analysis, allowing thorough patient treatment but also further study the toxicokinetics of amatoxins.
Recently, we presented a strategy for analysis of eight biomarkers in human urine to verify toxic mushroom or Ricinus communis ingestions. However, screening for the full panel is not always necessary. Thus, we aimed to develop a strategy to reduce analysis time and by focusing on two sets of analytes. One set (A) for biomarkers of late-onset syndromes, such as phalloides syndrome or the syndrome after castor bean intake. Another set (B) for biomarkers of early-onset syndromes, such as pantherine-muscaria syndrome and muscarine syndrome. Both analyses should be based on hydrophilic-interaction liquid chromatography coupled with high-resolution mass spectrometry (MS)/MS (HILIC-HRMS/MS). For A, urine samples were prepared by liquid-liquid extraction using dichloromethane and subsequent solid-phase extraction of the aqueous supernatant. For B urine was precipitated using acetonitrile. Method A was validated for ricinine and αand β-amanitin and method B for muscarine, muscimol, and ibotenic acid according to the specifications for qualitative analytical methods. In addition, robustness of recovery and normalized matrix factors to matrix variability measured by urinary creatinine was tested. Moreover, applicability was tested using 10 urine samples from patients after suspected mushroom intoxication. The analytes αand β-amanitin, muscarine, muscimol, and ibotenic acid could be successfully identified. Finally, psilocin-O-glucuronide could be identified in two samples and unambiguously distinguished from bufotenine-O-glucuronide via their MS 2 patterns. In summary, the current workflow offers several advantages towards the previous method, particularly being more labor-, time-, and costefficient, more robust, and more sensitive.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.