Arsenic (As) is a well-characterized human carcinogen but is generally not mutagenic. The evidence that As induces both loss of global DNA methylation and gene promoter DNA hypermethylation has suggested that epigenetic mechanisms may play an important role in As-induced carcinogenesis. In the present study, we examined the change in histone methylation by As exposure. In human lung carcinoma A549 cells, exposure to inorganic trivalent As (arsenite) increased H3K9 dimethylation (H3K9me2) and decreased H3K27 trimethylation (H3K27me3), both of which represent gene silencing marks, while increasing the global levels of the H3K4 trimethylation (H3K4me3), a gene-activating mark. The increase in H3K9me2 was mediated by an increase in the histone methyltransferase G9a protein and messenger RNA levels. We also observed strikingly significant altered histone modifications induced by very low-dose (0.1 microM) arsenite. Taken together, these results suggest a potential mechanism by which As induces carcinogenesis through the alteration of specific histone methylations that represent both gene silencing and activating marks. Furthermore, these marks are known to affect DNA methylation, and it is likely that arsenic's effect is not limited to histone modifications alone, but extends, perhaps by them, to DNA methylations as well. Future studies in our laboratory will address the genomic location of these silencing and activating marks using ChIP-on-chip technology.
N-myc downstream-regulated gene 1 (NDRG1) is an intracellular protein that is induced under a wide variety of stress and cell growth-regulatory conditions. NDRG1 is up-regulated by cell differentiation signals in various cancer cell lines and suppresses tumor metastasis. Despite its specific role in the molecular cause of Charcot-Marie-Tooth type 4D disease, there has been more interest in the gene as a marker of tumor progression and enhancer of cellular differentiation. Because it is strongly up-regulated under hypoxic conditions, and this condition is prevalent in solid tumors, its regulation is somewhat complex, governed by hypoxia-inducible factor 1 alpha (HIF-1alpha)- and p53-dependent pathways, as well as its namesake, neuroblastoma-derived myelocytomatosis, and probably many other factors, at the transcriptional and translational levels, and through mRNA stability. We survey the data for clues to the NDRG1 gene's mechanism and for indications that the NDRG1 gene may be an efficient diagnostic tool and therapy in many types of cancers.
Nickel (Ni) is a known carcinogen, although the mechanism of its carcinogenicity is not clear. Here, we provide evidence that Ni can induce phosphorylation of histone H3 at its serine 10 residue in a c-jun N-terminal kinase (JNK)/stress-activated protein kinase (SAPK)-dependent manner. Ni induces the phosphorylation of JNK, with no effect on the phosphorylation states of the extracellular signal-regulated kinase (ERK) or p38 mitogen-activated protein kinases. An inhibitor of JNK eliminated the Ni-initiated JNK-mediated induction of histone H3 phosphorylation at serine 10, whereas inhibitors specific for ERK or p38 kinases had no effect on the phosphorylation levels of histone H3 at serine 10 (P-H3S10) in Ni-treated cells. A complete loss of Ni ion-induced phosphorylation of H3S10 was observed when JNK was specifically knocked down with RNAi. These results are the first to show the specific JNK-mediated phosphorylation of histone H3 at its serine 10 residue. We show that addition of Ni to an in vitro P-H3S10 dephosphorylation reaction does not change the loss of phosphorylation in the reaction, supporting the notion that Ni causes H3S10 phosphorylation via the JNK/SAPK pathway. It is likely that modification of H3S10 is one of a growing number of epigenetic changes believed to be involved in the carcinogenesis caused by Ni.
Epigenetics refers to heritable patterns of gene expression that do not depend on alterations of the genomic DNA sequence. Nickel compounds have demonstrated carcinogenicity without any associated mutagenesis, suggesting that its mechanism of carcinogenesis is epigenetic in nature. One such potential mechanism is the heterochromatinization of chromatin within a region of the genome containing a gene sequence, inhibiting any further molecular interactions with that underlying gene sequence and effectively inactivating that gene. We report here the observation, by atomic force microscopy and circular dichroism spectropolarimetry, that nickel ion (Ni 2+ ) condenses chromatin to a greater extent than the natural divalent cation of the cell, magnesium ion (Mg 2+ ). In addition, we use a model experimental system that incorporates a transgene, the bacterial xanthine guanine phosphoribosyl transferase gene (gpt) differentially near to, and far away from, a heterochromatic region of the genome, in two cell lines, the Chinese hamster V79-derived G12 and G10 cells, respectively, to demonstrate by DNase I protection assay that nickel treatement protects the gpt gene sequence from DNase I exonuclease digestion in the G12 cells, but not in the G10 cells. We conclude that condensation of chromatin by nickel is a potential mechanism of nickel-mediated gene regulation. Keywords chromatin; heterochromatin; nickel; divalent cation; carcinogenesisChromatin is the natural state of protein-associated DNA in all eukaryotes. It is a dynamic polymer of subunits called nucleosomes. The nucleosome subunit consists of approximately 146 bps of DNA wrapped around an octamer of histone proteins. The histone octamer is made up of two each of histone H2A, H2B, H3, and H4. The DNA makes one and a half turns around the octamer, with the entry and exit points of the DNA at opposite sides of the disk-shaped histone octameric complex. This complex of 146 bps and the octamer of histones is known as the nucleosome core particle. In chromatin, the exiting and entering DNA duplex strands of this nucleosome core particle extend to the next nucleosome core particles on either side of it. The intervening DNA connecting each pair of nucleosomes is termed the linker DNA. The lengths of these intervening DNA duplex strands vary from species to species and from tissue types to tissues types, as well as from one stretch between two nucleosomes to another. Linker DNA length ranges from a minimum of 25 bps to upwards of 100 bps, averaging approximately 50 to 60 bps (1). A fifth histone type, the linker histone (H1), binds to the linker DNA in a stoichiometry of 1 H1 to 1 nucleosome. The complex of the core particle (the histone octamer
BackgroundThe understanding of the biological function, regulation, and cellular interactions of the yeast genome and proteome, along with the high conservation in gene function found between yeast genes and their human homologues, has allowed for Saccharomyces cerevisiae to be used as a model organism to deduce biological processes in human cells. Here, we have completed a systematic screen of the entire set of 4,733 haploid S. cerevisiae gene deletion strains (the entire set of nonessential genes for this organism) to identify gene products that modulate cellular toxicity to nickel sulfate (NiSO4).ResultsWe have identified 149 genes whose gene deletion causes sensitivity to NiSO4 and 119 genes whose gene deletion confers resistance. Pathways analysis with proteins whose absence renders cells sensitive and resistant to nickel identified a wide range of cellular processes engaged in the toxicity of S. cerevisiae to NiSO4. Functional categories overrepresented with proteins whose absence renders cells sensitive to NiSO4 include homeostasis of protons, cation transport, transport ATPases, endocytosis, siderophore-iron transport, homeostasis of metal ions, and the diphthamide biosynthesis pathway. Functional categories overrepresented with proteins whose absence renders cells resistant to nickel include functioning and transport of the vacuole and lysosome, protein targeting, sorting, and translocation, intra-Golgi transport, regulation of C-compound and carbohydrate metabolism, transcriptional repression, and chromosome segregation/division. Interactome analysis mapped seven nickel toxicity modulating and ten nickel-resistance networks. Additionally, we studied the degree of sensitivity or resistance of the 111 nickel-sensitive and 72 -resistant strains whose gene deletion product has a similar protein in human cells.ConclusionWe have undertaken a whole genome approach in order to further understand the mechanism(s) regulating the cell's toxicity to nickel compounds. We have used computational methods to integrate the data and generate global models of the yeast's cellular response to NiSO4. The results of our study shed light on molecular pathways associated with the cellular response of eukaryotic cells to nickel compounds and provide potential implications for further understanding the toxic effects of nickel compounds to human cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.