1. Seven fractions sedimenting at between 3000 and 120000g-min were prepared from a rat liver homogenate by differential centrifugation in buffered iso-osmotic sucrose. The following measurements were carried out on each of these fractions: Ruthenium Red-sensitive Ca(2+) transport in the absence and in the presence of P(i) as well as in the presence of N-ethylmaleimide to prevent P(i) cycling, succinate-supported respiration in the absence and in the presence of ADP, the DeltaE and -59 DeltapH components of the protonmotive force, cytochrome oxidase, uncoupler-stimulated adenosine triphosphatase, alpha-glycerophosphate dehydrogenase, P(i) content and the effect on the ;resting' rate of respiration of repeated additions of a fixed Ca(2+) concentration. 2. Ca(2+) transport either in the presence or in the absence of added P(i) and in the presence of N-ethylmaleimide exhibits significantly higher rates in the fraction sedimenting at 8000g-min. By contrast, respiration in the presence or in the absence of added ADP and the values for DeltaE and -59 DeltapH were similar in those fractions sedimenting between 4000 and 20000g-min, indicating that the driving force for Ca(2+) transport was similar in each of these fractions. 3. Experiments designed to determine the capacity of the individual fractions for Ca(2+), as measured by the effect of repeated additions of Ca(2+) on the resting rate of respiration, showed that fraction 2, i.e. that sedimenting at 8000g-min, also exhibited the greatest tolerance towards the uncoupling action of the ion. 4. Of the three enzyme activity profiles, only that of alpha-glycerophosphate dehydrogenase was similar to that of Ca(2+) transport. Because previous workers have assigned this enzyme to loci in the inner peripheral membrane [Werner & Neupert (1972) Eur. J. Biochem.25, 379-396], it is concluded that the Ruthenium Red-sensitive Ca(2+)- transport system also is located in this domain of the inner membrane. The relation of these findings to the mechanisms of mitochondrial Ca(2+) transport and the biogenesis of mitochondria is discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.