Transforming growth factor-beta1 (TGF-beta1) is abundantly expressed in pulmonary hypertension, but its effect on the pulmonary circulation remains unsettled. We studied the consequences of TGF-beta1 stimulation on freshly isolated human pulmonary artery smooth muscle cells (HPASMC). TGF-beta1 initially promoted differentiation, with upregulated expression of smooth muscle contractile proteins. TGF-beta1 also induced expression of Nox4, the only NAD(P)H oxidase membrane homolog found in HPASMC, through a signaling pathway involving Smad 2/3 but not mitogen-activated protein (MAP) kinases. TGF-beta1 likewise increased production of reactive oxygen species (ROS), an effect significantly reduced by the NAD(P)H oxidase flavoprotein inhibitor diphenylene iodonium (DPI) and by Nox4 siRNAs. In the absence of TGF-beta1, Nox4 was present in freshly cultured cells but progressively lost with each passage in culture, paralleling a decrease in ROS production by HPASMC over time. At a later time point (72 h), TGF-beta1 promoted HPASMC proliferation in a manner partially inhibited by Nox4 small interfering RNA and dominant negative Smad 2/3, indicating that TGF-beta1 stimulates HPASMC growth in part by a redox-dependent mechanism mediated through induction of Nox4. HPASMC activation of the MAP kinases ERK1/2 was reduced by the NAD(P)H oxidase inhibitors DPI and 4-(2-aminoethyl)benzenesulfonyl fluoride, suggesting that TGF-beta1 may facilitate proliferation by upregulating Nox4 and ROS production, with transient oxidative inactivation of phosphatases and augmentation of growth signaling cascades. These findings suggest that Nox4 is the relevant Nox homolog in HPASMC. This is the first observation that TGF-beta1 regulates Nox4, with important implications for mechanisms of pulmonary vascular remodeling.
Reactive oxygen species (ROS) appear to play an important role in regulating growth and survival of prostate cancer. However, the sources for ROS production in prostate cancer cells have not been determined. We report that ROS are generated by intact American Type Culture Collection DU 145 cells and by their membranes through a mechanism blocked by NAD(P)H oxidase inhibitors. ROS are critical for growth in these cells, because NAD(P)H oxidase inhibitors and antioxidants blocked proliferation. Components of the human phagocyte NAD(P)H oxidase, p22phox and gp91phox, as well as the Ca2+ concentration-responsive gp91phox homolog NOX5 were demonstrated in DU 145 cells by RT-PCR and sequencing. Although the protein product for p22phox was not detectable, both gp91phox and NOX5 were identified throughout the cell by immunostaining and confocal microscopy and NOX5 immunostaining was enhanced in a perinuclear location, corresponding to enhanced ROS production adjacent to the nuclear membrane imaged by 2',7'-dichlorofluorescin diacetate oxidation. The calcium ionophore ionomycin dramatically stimulated ferricytochrome c reduction in cell media, further supporting the importance of NOX5 for ROS production. Antisense oligonucleotides for NOX5 inhibited ROS production and cell proliferation in DU 145 cells. In contrast, antisense oligonucleotides to p22phox or gp91phox did not impair cell growth. Inhibition of ROS generation with antioxidants or NAD(P)H oxidase inhibitors increased apoptosis in cells. These results indicate that ROS generated by the newly described NOX5 oxidase are essential for prostate cancer growth, possibly by providing trophic intracellular oxidant tone that retards programmed cell death.
Persistent hypoxia can cause pulmonary arterial hypertension that may be associated with significant remodeling of the pulmonary arteries, including smooth muscle cell proliferation and hypertrophy. We previously demonstrated that the NADPH oxidase homolog NOX4 mediates human pulmonary artery smooth muscle cell (HPASMC) proliferation by transforming growth factor-beta1 (TGF-beta1). We now show that hypoxia increases HPASMC proliferation in vitro, accompanied by increased reactive oxygen species generation and NOX4 gene expression, and is inhibited by antioxidants, the flavoenzyme inhibitor diphenyleneiodonium (DPI), and NOX4 gene silencing. HPASMC proliferation and NOX4 expression are also observed when media from hypoxic HPASMC are added to HPASMC grown in normoxic conditions, suggesting autocrine stimulation. TGF-beta1 and insulin-like growth factor binding protein-3 (IGFBP-3) are both increased in the media of hypoxic HPASMC, and increased IGFBP-3 gene expression is noted in hypoxic HPASMC. Treatment with anti-TGF-beta1 antibody attenuates NOX4 and IGFBP-3 gene expression, accumulation of IGFBP-3 protein in media, and proliferation. Inhibition of IGFBP-3 expression with small interfering RNA (siRNA) decreases NOX4 gene expression and hypoxic proliferation. Conversely, NOX4 silencing does not decrease hypoxic IGFBP-3 gene expression or secreted protein. Smad inhibition does not but the phosphatidylinositol 3-kinase (PI3K) signaling pathway inhibitor LY-294002 does inhibit NOX4 and IGFBP-3 gene expression, IGFBP-3 secretion, and cellular proliferation resulting from hypoxia. Immunoblots from hypoxic HPASMC reveal increased TGF-beta1-mediated phosphorylation of the serine/threonine kinase (Akt), consistent with hypoxia-induced activation of PI3K/Akt signaling pathways to promote proliferation. We conclude that hypoxic HPASMC produce TGF-beta1 that acts in an autocrine fashion to induce IGFBP-3 through PI3K/Akt. IGFBP-3 increases NOX4 gene expression, resulting in HPASMC proliferation. These observations add to our understanding hypoxic pulmonary vascular remodeling.
nant melanoma cells spontaneously generate reactive oxygen species (ROS) that promote constitutive activation of the transcription factor nuclear factor-B (NF-B). Although antioxidants and inhibitors of NAD(P)H oxidases significantly reduce constitutive NF-B activation and suppress cell proliferation (11), the nature of the enzyme responsible for ROS production in melanoma cells has not been determined. To address this issue, we now have characterized the source of ROS production in melanoma cells. We report that ROS are generated by isolated, cytosol-free melanoma plasma membranes, with inhibition by NAD(P)H oxidase inhibitors. The p22 phox , gp91 phox , and p67 phox components of the human phagocyte NAD(P)H oxidase and the gp91 phox homolog NOX4 were demonstrated in melanomas by RT-PCR and sequencing, and protein product for both p22 phox and gp91 phox was detected in cell membranes by immunoassay. Normal human epidermal melanocytes expressed only p22 phox and NOX4. Melanoma proliferation was reduced by NAD(P)H oxidase inhibitors and by transfection of antisense but not sense oligonucleotides for p22 phox and NOX4. Also, the flavoprotein inhibitor diphenylene iodonium inhibited constitutive DNA binding of nuclear protein to the NF-B and cAMP-response element consensus oligonucleotides, without affecting DNA binding activity to activator protein-1 or OCT-1. This suggests that ROS generated in autocrine fashion by an NAD(P)H oxidase may play a role in signaling malignant melanoma growth. superoxide anion; diphenylene iodonium; p22 phox ; gp91 phox ; p67 phox ; NOX1; NOX4; nuclear factor-B; cAMP response element; dicumarol REACTIVE OXYGEN SPECIES (ROS) generated by an NAD(P)H oxidase have been recently recognized as important signaling molecules for proliferation of normal cells. The role of a signaling NAD(P)H oxidase has been most extensively explored in vascular smooth muscle cells, where both p22 phox and the unique gp91 phox homolog NOX1 have been shown to be important for function of an NAD(P)H oxidase activity that mediates angiotensin IIinduced superoxide (O 2 Ϫ ) formation and redox-sensitive signaling pathways (19,30). Similar but structurally distinct NAD(P)H oxidases also perform signaling functions in normal vascular endothelial cells (18, 25) and adventitial cells (38), and the gp91 phox homolog NOX4 has recently been described in renal tubular epithelium (17, 45), fetal tissue (12), placenta (12), and proliferating vascular smooth muscle (30).Like normal cells, human tumor cells also produce substantial amounts of ROS spontaneously (15,37,49), and evidence points to a role for these ROS in signaling neoplastic proliferation. Mitogenic signaling through both Ras (22) and Rac (26) is mediated by O 2 Ϫ , and transfection with mitogenic oxidase NOX1 transforms normal fibroblasts (48) and creates cell lines that are tumorigenic in athymic mice (2). The NOX1 homolog has been found expressed in the Caco human colon carcinoma cells (12,28,48) and HepG2 hepatoma cells (28), and gp91 phox expression has been...
The transcription factor nuclear factor-kappaB (NF-kappaB) is constitutively activated in malignancies from enhanced activity of inhibitor of NF-kappaB (IkappaB) kinase, with accelerated IkappaBalpha degradation. We studied whether redox signaling might stimulate these events. Cultured melanoma cells generated superoxide anions (O(2)(-)) without serum stimulation. O(2)(-) generation was reduced by the NAD(P)H:quinone oxidoreductase (NQO) inhibitor dicumarol and the quinone analog capsaicin, suggesting that electron transfer from NQO through a quinone-mediated pathway may be an important source of endogenous reactive oxygen species (ROS) in tumor cells. Treatment of malignant melanoma cells with the H(2)O(2) scavenger catalase, the sulfhydryl donor N-acetylcysteine, the glutathione peroxidase mimetic ebselen, or dicumarol decreased NF-kappaB activation. Catalase, N-acetylcysteine, ebselen, dicumarol, and capsaicin also inhibited growth of melanoma and other malignant cell lines. These results raise the possibility that ROS produced endogenously by mechanisms involving NQO can constitutively activate NF-kappaB in an autocrine fashion and suggest the potential for new antioxidant strategies for interruption of oxidant signaling of melanoma cell growth.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.