The distribution of the mossy fiber synaptic terminals was examined using the Timm histochemical method in surgically excised hippocampus and dentate gyrus from patients who underwent lobectomy of the anterior part of the temporal lobe for refractory partial complex epilepsy. The dentate gyrus of epileptic patients demonstrated intense Timm granules and abundant mossy fiber synaptic terminals in the supragranular region and the inner molecular layer. In contrast, the dentate gyrus of presenescent nonepileptic primates demonstrated no Timm granules in the supragranular region. In nonepileptic senescent primates, occasional very sparse supragranular Timm granules were results are morphological evidence of mossy fiber synaptic reorganization in the temporal lobe of epileptic humans, and suggest the intriguing possibility that mossy fiber sprouting and synaptic reorganization induced by repeated partial complex seizures may play a role in human epilepsy.
Abnormal functional activity induces long-lasting physiological alterations in neural pathways that may play a role in the development of epilepsy. The cellular mechanisms of these alterations are not well understood. One hypothesis is that abnormal activity causes structural reorganization of neural pathways and promotes epileptogenesis. This report provides morphological evidence that synchronous perforant path activation and kindling of limbic pathways induce axonal growth and synaptic reorganization in the hippocampus, in the absence of overt morphological damage. The results show a previously unrecognized anatomic plasticity associated with synchronous activity and development of epileptic seizures in neural pathways.
Temporal lobe epilepsy is a common form of drug-resistant epilepsy that sometimes responds to dietary manipulation such as the 'ketogenic diet'. Here we have investigated the effects of the glycolytic inhibitor 2-deoxy-D-glucose (2DG) in the rat kindling model of temporal lobe epilepsy. We show that 2DG potently reduces the progression of kindling and blocks seizure-induced increases in the expression of brain-derived neurotrophic factor and its receptor, TrkB. This reduced expression is mediated by the transcription factor NRSF, which recruits the NADH-binding co-repressor CtBP to generate a repressive chromatin environment around the BDNF promoter. Our results show that 2DG has anticonvulsant and antiepileptic properties, suggesting that anti-glycolytic compounds may represent a new class of drugs for treating epilepsy. The metabolic regulation of neuronal genes by CtBP will open avenues of therapy for neurological disorders and cancer.
Recent studies have revealed that mossy fiber axons of granule cells in the dentate gyrus undergo reorganization of their terminal projections in both animal models of epilepsy and human epilepsy. This synaptic reorganization has been demonstrated by the Timm method, a histochemical technique that selectively labels synaptic terminals of mossy fibers because of their high zinc content. It has been generally presumed that the reorganization of the terminal projections of the mossy fiber pathway is a consequence of axonal sprouting and synaptogenesis by mossy fibers. To evaluate this possibility further, the time course for development of Timm granules, which correspond ultrastructurally to mossy fiber synaptic terminals, was examined in the supragranular layer of the dentate gyrus at the initiation of kindling stimulation with an improved scoring method for assessment of alterations in Timm histochemistry. The progression and permanence of this histological alteration were similarly evaluated during the behavioral and electrographic evolution of kindling evoked by perforant path, amygdala, or olfactory bulb stimulation. Mossy fiber synaptic terminals developed in the supragranular region of the dentate gyrus by 4 d after initiation of kindling stimulation in a time course compatible with axon sprouting. The induced alterations in the terminal projections of the mossy fiber pathway progressed with the evolution of behavioral kindled seizures, became permanent in parallel with the development of longlasting susceptibility to evoked seizures, and were observed as long as 8 months after the last evoked kindled seizure. The results demonstrated a strong correlation between mossy fiber synaptic reorganization and the development, progression, and permanence of the kindling phenomenon.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.