High-level visual cortex in humans includes functionally defined regions that preferentially respond to objects, faces and places. It is unknown how these regions develop and whether their development relates to recognition memory. We used functional magnetic resonance imaging to examine the development of several functionally defined regions including object (lateral occipital complex, LOC)-, face ('fusiform face area', FFA; superior temporal sulcus, STS)- and place ('parahippocampal place area', PPA)-selective cortices in children (ages 7-11), adolescents (12-16) and adults. Right FFA and left PPA volumes were substantially larger in adults than in children. This development occurred by expansion of FFA and PPA into surrounding cortex and was correlated with improved recognition memory for faces and places, respectively. In contrast, LOC and STS volumes and object-recognition memory remained constant across ages. Thus, the ventral stream undergoes a prolonged maturation that varies temporally across functional regions, is determined by brain region rather than stimulus category, and is correlated with the development of category-specific recognition memory.
Human ventral temporal cortex (VTC) plays a pivotal role in high-level vision. An under-studied macroanatomical feature of VTC is the mid-fusiform sulcus (MFS), a shallow longitudinal sulcus separating the lateral and medial fusiform gyrus (FG). Here, we quantified the morphological features of the MFS in 69 subjects (ages 7–40), and investigated its relationship to both cytoarchitectonic and functional divisions of VTC with four main findings. First, despite being a minor sulcus, we found that the MFS is a stable macroanatomical structure present in all 138 hemispheres with morphological characteristics developed by age 7. Second, the MFS is the locus of a lateral-medial cytoarchitechtonic transition within the posterior FG serving as the boundary between cytoarchitectonic regions FG1 and FG2. Third, the MFS predicts a lateral-medial functional transition in eccentricity bias representations in children, adolescents, and adults. Fourth, the anterior tip of the MFS predicts the location of a face-selective region, mFus-faces/FFA-2. These findings are the first to illustrate that a macroanatomical landmark identifies both cytoarchitectonic and functional divisions of high-level sensory cortex in humans and have important implications for understanding functional and structural organization in the human brain.
Recent studies have revealed that mossy fiber axons of granule cells in the dentate gyrus undergo reorganization of their terminal projections in both animal models of epilepsy and human epilepsy. This synaptic reorganization has been demonstrated by the Timm method, a histochemical technique that selectively labels synaptic terminals of mossy fibers because of their high zinc content. It has been generally presumed that the reorganization of the terminal projections of the mossy fiber pathway is a consequence of axonal sprouting and synaptogenesis by mossy fibers. To evaluate this possibility further, the time course for development of Timm granules, which correspond ultrastructurally to mossy fiber synaptic terminals, was examined in the supragranular layer of the dentate gyrus at the initiation of kindling stimulation with an improved scoring method for assessment of alterations in Timm histochemistry. The progression and permanence of this histological alteration were similarly evaluated during the behavioral and electrographic evolution of kindling evoked by perforant path, amygdala, or olfactory bulb stimulation. Mossy fiber synaptic terminals developed in the supragranular region of the dentate gyrus by 4 d after initiation of kindling stimulation in a time course compatible with axon sprouting. The induced alterations in the terminal projections of the mossy fiber pathway progressed with the evolution of behavioral kindled seizures, became permanent in parallel with the development of longlasting susceptibility to evoked seizures, and were observed as long as 8 months after the last evoked kindled seizure. The results demonstrated a strong correlation between mossy fiber synaptic reorganization and the development, progression, and permanence of the kindling phenomenon.
We used diffusion tensor imaging to examine white matter integrity in the dorsal and ventral streams among individuals with Williams syndrome (WS) compared with two control groups (typically developing and developmentally delayed) and using three separate analysis methods (whole brain, region of interest, and fiber tractography). All analysis methods consistently showed that fractional anisotropy (FA; a measure of microstructural integrity) was higher in the right superior longitudinal fasciculus (SLF) in WS compared with both control groups. There was a significant association with deficits in visuospatial construction and higher FA in WS individuals. Comparable increases in FA across analytic methods were not observed in the left SLF or the bilateral inferior longitudinal fasciculus in WS subjects. Together, these findings suggest a specific role of right SLF abnormality in visuospatial construction deficits in WS.
Epilepsy is a common outcome of traumatic brain injury (TBI), but the mechanisms of posttraumatic epileptogenesis are poorly understood. One clue is the occurrence of selective hippocampal cell death after fluid-percussion TBI in rats, consistent with the reported reduction of hippocampal volume bilaterally in humans after TBI and resembling hippocampal sclerosis, a hallmark of temporal-lobe epilepsy. Other features of temporal-lobe epilepsy, such as long-term seizure susceptibility, persistent hyperexcitability in the dentate gyrus (DG), and mossy fiber synaptic reorganization, however, have not been examined after TBI. To determine whether TBI induces these changes, we used a well studied model of TBI by weight drop on somatosensory cortex in adult rats. First, we confirmed an early and selective cell loss in the hilus of the DG and area CA3 of hippocampus, ipsilateral to the impact. Second, we found persistently enhanced susceptibility to pentylenetetrazole-induced convulsions 15 weeks after TBI. Third, by applying GABA(A) antagonists during field-potential and optical recordings in hippocampal slices 3 and 15 weeks after TBI, we unmasked a persistent, abnormal APV-sensitive hyperexcitability that was bilateral and localized to the granule cell and molecular layers of the DG. Finally, using Timm histochemistry, we detected progressive sprouting of mossy fibers into the inner molecular layers of the DG bilaterally 2-27 weeks after TBI. These findings are consistent with the development of posttraumatic epilepsy in an animal model of impact head injury, showing a striking similarity to the enduring behavioral, functional, and structural alterations associated with temporal-lobe epilepsy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.