Due to the high level of light absorption and light scattering of dark colored powders connected with the high refractive indices of ceramic particles, the majority of ceramics studied via stereolithography (SLA) have been light in color, including ceramics such as alumina, zirconia and tricalcium phosphate. This article focuses on a lithography-based ceramic manufacturing (LCM) method for β-SiAlON ceramics that are derived from silicon nitride and have excellent material properties for high temperature applications. This study demonstrates the general feasibility of manufacturing of silicon nitride-based ceramic parts by LCM for the first time and combines the advantages of SLA, such as the achievable complexity and low surface roughness (Ra = 0.50 µm), with the typical properties of conventionally manufactured silicon nitride-based ceramics, such as high relative density (99.8%), biaxial strength (σf = 764 MPa), and hardness (HV10 = 1500).
A green and scalable one-pot hydrothermal synthesis generates polyimide/silica hybrid materials, which can be processed by green, solvent-free sintering.
A processing technique for the preparation of porous, silicon carbonitride-based ceramics in tubular geometry derived from a liquid polysilazane precursor is presented. After casting of polysilazane/polymer-microbead dispersions, cross-linking, and subsequent pyrolytic conversion and selective removal of polymer templates, specimens with an inner and outer diameter of 6 and 10 mm, respectively, and a length of up to 65 mm were obtained. Porosity was controlled by sacrificial template content and reached values up to 48% after pyrolytic conversion, at average pore opening radii of 1¯m. The tubular specimens exhibited diametral compression strengths (C-ring test) between 24 « 6 and 36 « 4 MPa. Darcian permeability constants of up to 1.7·10 ¹14 m 2 were found by gas permeability testing. The results demonstrate that this methodology facilitates the straightforward generation of complex-shaped porous specimens, further allowing for a control of strength and permeability in a specific range. Potential applications for the tubular, porous structures developed can be anticipated in the fields of separation or catalysis.
Die additive Fertigung von Schneidstoffen hat das Potenzial, leistungsfähigere Zerspanungswerkzeuge zu ermöglichen. Das Lithography-based Ceramic-Manufacturing-(LCM)-Verfahren erlaubt die Fertigung hochbelastbarer Bauteile aus Keramik. Dieser Beitrag stellt zum einen das LCM-Verfahren und zum anderen die Entwicklung additiv herstellbarer Wendeschneidplatten vor. Zuletzt erfolgt die Überprüfung der Funktionstauglichkeit von additiv hergestellten keramischen Wendeschneidplatten in Außenlängsdrehversuchen mit vermicularem Gusseisen (GJV-450).
The additive manufacturing of cutting materials has the potential to enable more efficient cutting tools. The Lithography-based Ceramic Manufacturing (LCM) process allows for the production of high-performance ceramic components. This article presents the LCM process as well as the development of indexable inserts that can be produced additively. Finally, the results of external longitudinal turning tests in Compacted Graphite Iron (CGI-450) are presented.
Die additive Fertigung von Schneidstoffen bietet die Chance, leistungsfähigere Zerspanungswerkzeuge herzustellen. Vorgestellt wird zum einen das Lithography-based Ceramic-Manufacturing-(LCM)-Verfahren und zum anderen die Entwicklung damit gefertigter Wendeschneidplatten (WSP). Die Funktionstauglichkeit dieser keramischen WSP wird in Außenlängsdrehversuchen an vermicularem Gusseisen untersucht.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.