Compost production is a critical component of organic waste handling, and compost applications to soil are increasingly important to crop production. However, we know surprisingly little about the microbial communities involved in the composting process and the factors shaping compost microbial dynamics. Here, we used high-throughput sequencing approaches to assess the diversity and composition of both bacterial and fungal communities in compost produced at a commercial-scale. Bacterial and fungal communities responded to both compost recipe and composting method. Specifically, bacterial communities in manure and hay recipes contained greater relative abundances of Firmicutes than hardwood recipes with hay recipes containing relatively more Actinobacteria and Gemmatimonadetes. In contrast, hardwood recipes contained a large relative abundance of Acidobacteria and Chloroflexi. Fungal communities of compost from a mixture of dairy manure and silage-based bedding were distinguished by a greater relative abundance of Pezizomycetes and Microascales. Hay recipes uniquely contained abundant Epicoccum, Thermomyces, Eurotium, Arthrobotrys, and Myriococcum. Hardwood recipes contained relatively abundant Sordariomycetes. Holding recipe constant, there were significantly different bacterial and fungal communities when the composting process was managed by windrow, aerated static pile, or vermicompost. Temporal dynamics of the composting process followed known patterns of degradative succession in herbivore manure. The initial community was dominated by Phycomycetes, followed by Ascomycota and finally Basidiomycota. Zygomycota were associated more with manure-silage and hay than hardwood composts. Most commercial composters focus on the thermophilic phase as an economic means to insure sanitation of compost from pathogens. However, the community succeeding the thermophilic phase begs further investigation to determine how the microbial dynamics observed here can be best managed to generate compost with the desired properties.
Biological soil crust is composed of lichens, cyanobacteria, green algae, mosses, and fungi. Although crusts are a dominant source of nitrogen (N) in arid ecosystems, this study is among the first to demonstrate their contribution to N availability in xeric temperate habitats. The study site is located in Lucas County of Northwest Ohio. Using an acetylene reduction technique, we demonstrated potential N fixation for these crusts covering sandy, acidic, low N soil. Similar fixation rates were observed for crust whether dominated by moss, lichen, or bare soil. N inputs from biological crusts in northwestern Ohio are comparable to those in arid regions, but contribute substantially less N than by atmospheric deposition. Nitrate and ammonium leaching from the crust layer were quantified using ion exchange resin bags inserted within intact soil cores at 4 cm depth. Leaching of ammonium was greater and nitrate less in lichen than moss crusts or bare soil, and was less than that deposited from atmospheric sources. Therefore, biological crusts in these mesic, temperate soils may be immobilizing excess ammonium and nitrate that would otherwise be leached through the sandy soil. Moreover, automated monitoring of microclimate in the surface 7 cm of soil suggests that moisture and temperature fluctuations in soil are moderated under crust compared to bare soil without crust. We conclude that biological crusts in northwestern Ohio contribute potential N fixation, reduce N leaching, and moderate soil microclimate.
Infections of the cow udder leading to mastitis and reducing milk quality are a critical challenge facing all dairy farmers. Mastitis may be linked to the ecological disruption of an endogenous mammary microbial community, suggesting an ecosystems approach to management and prevention of this disease. The teat end skin represents a first point of host contact with mastitis pathogens and may offer an opportunity for microbially mediated resistance to infection, yet we know little about the microbial community of teat end skin or its potential interaction with the microbial community of intramammary milk of organic dairy cattle. High-throughput sequencing of marker genes for bacterial and fungal communities was used to characterize the skin and milk microbiome of cows with both a healthy and infected gland (i.e., udder quarter) and to assess the sharing of microbial DNA between these tissue habitat sites. The mammary microbiome varied among cows, through time, and between skin and milk. Microbiomes of milk from healthy and infected quarters reflected a diverse group of microbial DNA sequences, though milk had far fewer operational taxonomic units (OTUs) than skin. Milk microbiomes of infected quarters were generally more variable than healthy quarters and were frequently dominated by a single OTU; teat end skin microbiomes were relatively similar between healthy and infected quarters. Commonly occurring genera that were shared between skin and milk of infected glands included Staphylococcus spp. bacteria and Debaryomyces spp. fungi. Commonly occurring genera that were shared between skin and milk of healthy glands included bacteria SMB53 (Clostridiaceae) and Penicillium spp. fungi. Results support an ecological interpretation of the mammary gland and the notion that mastitis can be described as a dysbiosis, an imbalance of the healthy mammary gland microbiome.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.