This study clearly demonstrates that repopulating human SSCs have phenotypic characteristics of SSEA-4(+), CD49f(+), GPR-125(+)and c-Kit (neg/low). The results have direct implications for enrichment of human spermatogonia for further culture and germ cell differentiation studies.
Lipopeptides, a form of peptide immunogens, are currently under intense investigation as human vaccines for many infectious pathogens and cancers. However, the cellular and molecular mechanisms of lipopeptide immunogenicity are only partially understood. We have investigated the influence of the lipid content on the immunogenicity of lipopeptides using the herpes simplex virus type 1 (HSV-1) gD 1-23 peptide as a model antigen. Totally synthetic lipopeptides were constructed by covalent attachment to the peptide backbone of either N epalmitoyl-lysine (palmitoyl-lipidated peptide, palmitoyl-LP) or cholesterol-lysine (cholesterollipidated peptide, cholesterol-LP). Immunization of mice with the palmitoyl-LP, but not with its cholesterol-LP analog, induced a strong T cell-dependent protective immunity against lethal HSV-1 infection. Analysis of cytokine profiles and IgG2a/IgG1 ratios revealed that a dominant Th1-type immune response was stimulated by the palmitoyl-LP, as opposed to a Th2 response generated by its cholesterol-LP analog. The palmitoyl-LP was efficiently taken up in vitro by immature dendritic cells (DC) in a time-and dose-dependent manner, and induced phenotypic maturation and production of pro-inflammatory cytokines by DC. Finally, DC stimulated with the palmitoyl-LP induced antigen-specific T cell responses through the Tolllike receptor-2 pathway. These findings have important implications for the development of effective lipopeptide immunization strategies against infectious pathogens.
Spermatogonial stem cells (SSCs) maintain spermatogenesis by self-renewal and generation of spermatogonia committed to differentiation. Under certain in vitro conditions, SSCs from both neonatal and adult mouse testis can reportedly generate multipotent germ cell (mGC) lines that have characteristics and differentiation potential similar to embryonic stem (ES) cells. However, mGCs generated in different laboratories showed different germ cell characteristics, i.e., some retain their SSC properties and some have lost them completely. This raises an important question: whether mGC lines have been generated from different subpopulations in the mouse testes. To unambiguously identify and track germ line stem cells, we utilized a transgenic mouse model expressing green fluorescence protein under the control of a germ cell-specific Pou5f1 (Oct4) promoter. We found two distinct populations among the germ line stem cells with regard to their expression of transcription factor Pou5f1 and c-Kit receptor. Only the POU5F1C/c-KitC subset of mouse germ line stem cells, when isolated from either neonatal or adult testes and cultured in a complex mixture of growth factors, generates cell lines that express pluripotent ES markers, i.e., Pou5f1, Nanog, Sox2, Rex1, Dppa5, SSEA-1, and alkaline phosphatase, exhibit high telomerase activity, and differentiate into multiple lineages, including beating cardiomyocytes, neural cells, and chondrocytes. These data clearly show the existence of two distinct populations within germ line stem cells: one destined to become SSC and the other with the ability to generate multipotent cell lines with some pluripotent characteristics. These findings raise interesting questions about the relativity of pluripotency and the plasticity of germ line stem cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.