where he is a member of the Electrical and Computer Engineering Department and IDoTeach, a pre-service STEM teacher preparation program. His work focuses on the transition from pre-college to university engineering programs, how exposure to engineering prior to matriculation affects the experiences of engineering students, and engineering in the K-12 classroom. He has worked as a high school science, mathematics, and engineering and technology teacher, as well as several years of electrical and mechanical engineering design experience as a practicing engineer. He received his Bachelor of Science degree in Engineering from Swarthmore College, his Master's of Education degree from the University of Massachusetts, and a Master's of Science in Mechanical Engineering and Doctorate in Engineering Education from Purdue University.
Graduate College. iv ACKNOWLEDGMENTS I would like to acknowledge Dr. Chittoori for his efforts in making this thesis possible. Without his guidance or understanding, I would not have been afforded the opportunity to research this topic, which is a construct of my own accord. v ABSTRACT As of February 2019, the National Aeronautics and Space Administration (NASA) has reported since 1880 the average global temperature has increased 1°C, withthe warmest year on record being 2016. As the years continue to pass, it is becoming more evident that climate change is occurring, which is known to be a catalyst for climatic weather events. Statistically speaking, these events are more prevalent, and catastrophic exemplified as hurricanes, earthquakes, flooding, and fires. In addition to the increase of potentially catastrophic events, society as a whole has become more conscientious in the use and preservation of natural resources, waste generation, and energy consumption. As the overall population continues to grow, the need for safe, secure and sustainable infrastructure increases. Civil infrastructure must be assessed to measure the level at which it will withstand impact from a catastrophic event, as well as how it is utilizing precious resources and energy.In consideration of these previously mentioned issues, several federal agencies, companies, and researchers have put forth an effort to measure and quantify the ability of civil infrastructure to withstand climatic catastrophes. Also, metrics to quantify sustainable construction are increasingly used as a common tool for infrastructure design and development. Most sustainability metrics consider the qualities of a system that revolve around the concept of sustainable development but fail to consider the resiliency of that system. Sustainability assessments are often discrete and will focus on one particular aspect or measure. Resiliency metrics are often overly complex and do not vi fully encapsulate the quality in a way that is pragmatic or useful to practitioners and engineers, or simply neglect sustainable construction methods.Proposed here is a framework that attempts to unify sustainability and resiliency assessment of geotechnical infrastructure, by considering the risk of failure given the probability of a catastrophic event. The framework is developed for use on geotechnical engineered systems, specifically an earthen dam used for flood control. A Bayesian analysis is used to determine the probability of failure given the occurrence of a catastrophic event, in conjunction with both a resiliency assessment, and sustainability assessments. This is to ensure that the sustainability index is jointly dependent upon the changes in resiliency given the occurrence of a catastrophic event. Two separate failure modes that are possible at the location of the earthen dam were modeled to determine the flexibility of the framework. Failure modes include seismic events, and rapid-drawdown and both were modeled with their associated probabilities. Results from the assessment ...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.